SLIDING MODE CONTROL FOR INVERTIBLE SYSTEMS BASED ON A DIRECT DESIGN OF INTERACTORS

Tsutomu Mita, Taek-Kun Nam, and Xin Xin

ABSTRACT

The sliding mode tracking control is reviewed and extended so that it can be applicable to general invertible systems. The main advantage of this paper is a direct and numerical stable design of interactors for general invertible systems which is performed by calculating infinite eigenbasis of system matrices.

KeyWords: Sliding mode control, singular system, interactor, zeros.

I. INTRODUCTION

The sliding mode control (SMC) is well known as a robust control methodology which is applicable to certain nonlinear control systems and has been applied to many industrial control problems [1].

When the SMC is applied to a system basically described by \(\dot{x} = Ax + Bu \), a bang-bang control involving the switching function: \(\sigma = Cx \) is used. In order to guarantee occurrence of sliding mode, we usually assume that \(CB \) is non-singular [2]. And, the stability of sliding mode is ensured if and only if the invariant zeros of the system \((C, A, B) \) have negative real parts [1,2,3,5,7].

When we design a regulator, we can choose \(C \) to satisfy these two conditions. However, when we design a tracking control system, \(\sigma \) is needed to coincide with the control error \(e \) for a given controlled output \(y \), which means that we cannot choose \(C \) freely. In this case, \(CB \) no longer is non-singular in general.

If the system \((A, B, C) \) satisfies the decoupling condition [4], it is easy to get around this problem like the SMC for robotic manipulators [5,7]. Verghese et al. [3] used the interactor to get around this problem and extended \(C \) to the extent that the plant is invertible and propose a sliding mode control for invertible systems which requires measurement of state variables as well as derivatives of command signals. As for nonlinear systems, [15] solved a similar problem for the flat system.

In this paper, we first review SMC for the linear systems and will derive SMC for the invertible systems by a different way from that of Verghese et. al. [3]. We will introduce a direct design method of interactors for invertible transfer functions using infinite eigenvectors of system matrices.

As far as interactors concerned, we know the structure algorithm proposed by Silverman [12], or the geometrical approach [13]. However, a closed as well as numerically stable design method to derive interactors has not been shown.

Verghese et. al. [3] just applied the outcome of the structure algorithm to the sliding mode control and designed the desired interactor by two steps.

Comparing to their results, our algorithm provides a direct and explicit expression of the interactor needed for the sliding mode control which can be designed by numerically stable computation as well [14].

II. SMC FOR INVERTIBLE SYSTEMS

2.1 Review of the conventional SMC [1,2,3,5,7]

The plant considered in this paper is given by

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) + Bg(x,t) \\
y(t) &= Cx(t) \\
A &\in \mathbb{R}^{nxn}, B \in \mathbb{R}^{nxp}, C \in \mathbb{R}^{np}\end{align*}
\]

(1)

where \(x \in \mathbb{R}^n \) is the state variable which is assumed to be measurable; \(u \in \mathbb{R}^p \) is the control input; \(y \in \mathbb{R}^p \) is the controlled output which has to follow a given command signal \(r(t) \in \mathbb{R}^p \); \(g(x,t) \in \mathbb{R}^p \) is an unknown nonlinear perturbation which satisfies

\[
\|g(x,t)\| \leq M(x,t)
\]

(2)