PERFORMANCE ORIENTED CONTROL OVER NETWORKS:
SWITCHING CONTROLLERS AND SWITCHED TIME DELAY

Sandra Hirche, Chih-Chung Chen, and Martin Buss

ABSTRACT

The stability and performance of a networked control system (NCS) strongly depends on the communication quality, e.g., the communication time delay. Aiming for performance oriented control over networks in the presence of piecewise constant time delay, two novel control approaches are investigated. In the first approach, the time delay is monitored and an appropriate controller is selected. The second approach is based on the Quality-of-Service communication concept, where the time delay is adjustable and related to the network cost. Aiming for an optimal trade-off between network cost and control performance the controller, together with the time delay, is switched. Both approaches result in a switched system with switched (piecewise constant) delays. Sufficient stability conditions for the resulting switched time delay system are presented using a piecewise continuous Lyapunov-Razumikhin function. A common Lyapunov function is derived for symmetric systems. The performance benefits for both approaches are demonstrated in numerical examples.

I. INTRODUCTION

In terms of affordability, widespread usage, and well developed infrastructure, communication networks are very attractive for the signal transmission in control systems. This comes, however, at the cost of a less than ideal signal transmission. Especially, time delay associated with the data transmission has a strong influence on the stability and the performance of the closed loop system, see [1, 2] for a general overview on control challenges and approaches for networked control systems (NCS). In the current NCS literature the communication quality is assumed to be given in advance, and accordingly, stabilizing controllers are designed. In this paper, two alternative approaches dealing with the time delay problem are proposed. In the first approach, with time delay dependent controller switching, the time delay is monitored and an appropriate controller is selected online to ensure good performance. The time delay is assumed to be piecewise constant. This assumption is reasonable, e.g., in Token ring networks, whereby the removal or the addition of a network node causes the otherwise constant time delay to decrease/increase in a discontinuous manner, further also for route switching in multi-route networks.

In the second approach, the Quality-of-Service (QoS) control approach, the communication time delay is considered to be adjustable in realtime. This is motivated by the QoS concept from the networking community, which refers to the capability of a network to provide different communication quality to different network traffic classes, guaranteed low time...
delay results in very good control performance, but requires the provision of large network resources, i.e., induces high network cost. Aiming for a trade-off between control performance and network cost it is proposed to switch the time delay together with an appropriate controller. The time delay is again assumed piecewise constant.

As a result, in both considered approaches, the time delay and the controller are switched resulting in a switched system with switched time delay. Switched (hybrid) systems are dynamical systems that consist of a set of finite subsystems and a logical rule that orchestrates the switchings between them. The stability of the subsystems themselves is not sufficient for the stability of the overall system [3, 4]. Stability with arbitrary switching can be ensured by a common Lyapunov function which is difficult to construct in general. The concept of piecewise continuous Lyapunov functions is developed in [5–7]. Alternatively, dwell-time based switching is considered in [8, 9]. All these approaches, however, do not consider time delay. The most prominent approaches in the rich literature on time delay systems, see e.g. [10–12] and references therein, are Lyapunov-like approaches based either on the Razumikhin or the Krasovskii method. Switched time delay systems are considered in [13, 14], where the common Lyapunov function approach is extended and in [15] adopting a dwell-time approach. However, a constant time delay is considered there. To the best of the authors knowledge there are no stability and performance results available for switched systems with switched time delays. The main contribution of this paper is a sufficient condition for the stability of switched systems with switched (piecewise constant) delays based on a piecewise continuous Lyapunov function approach and a common Lyapunov approach for symmetric systems. The performance of both considered approaches is studied in numerical examples. Benefits in terms of improved control performance are shown for the delay-dependent controller switching approach. An optimal trade-off between control performance and network cost is achieved for the QoS control approach using a hybrid optimal control algorithm from [16].

The remainder of the paper is organized as follows: the problem definition along with preliminaries on the stability of switched systems and time delay systems are given in Section II. In Section III, the main result on stability of switched systems with switched time delay is presented, followed by application examples with performance considerations in Section IV.

II. NOTATIONS AND DEFINITIONS

Throughout this paper the extensively used notations are given:

- The set of $n$ component real vectors is defined by $\mathbb{R}^n$. $\mathbb{R}^n$ denotes the set of positive real numbers and $\mathcal{P}$ denotes the set of subsystems within a switched system.
- $\| \cdot \|$ denotes the Euclidean norm: for a continuous function $x(t) \in [a, b]$, the norm $\| x(t) \|_c$ is defined by $\| x(t) \|_c = \max_{a \leq t \leq b} \| x(t) \|$.
- $V(t, x(t))$ denotes the family of nonnegative functions and its right-hand derivative is defined as $\dot{V}(t, x(t)) = \lim_{\Delta \to 0, \Delta > 0} \frac{V(t+\Delta, x(t+\Delta)) - V(t, x(t))}{\Delta}$.
- $u_1$, $u_2$, $w$, $p$, and $h$ are continuous nondecreasing positive functions with $u_1(s), u_2(s), w(s), p(s), h(s) > 0$ for $s > 0$ with $u_1(0) = u_2(0) = h(0) = 0$.

**Definition 1.** For any dynamics system with a trivial solution, $x(t) = 0$ is said to be stable if for any $t_0 \in \mathbb{R}^+$ and any $\epsilon > 0$ there exists a $\delta = \delta(t_0, \epsilon) > 0$ such that $\| x(t_0) \| < \delta$ implies $\| x(t) \| < \epsilon$ for $t > t_0$. It is said to be asymptotically stable if it is stable, and for any $t_0 \in \mathbb{R}^+$ and any $\epsilon > 0$, if there exists a $\delta = \delta(t_0, \epsilon)$ such that $\| x(t_0) \| < \delta$ implies $\lim_{t \to \infty} x(t) = 0$. It is said to be uniformly stable if it is stable and $\delta = \delta(t_0, \epsilon)$ can be chosen independent of $t_0 \in \mathbb{R}^+$. It is said to be uniformly asymptotically stable if it is uniformly stable and there exists a $\delta > 0$ such that for any $\eta > 0$ there is a $T = T(\delta, \eta)$, such that $\| x(t_0) \| < \delta$ implies $\| x(t) \| < \eta$ for $t \geq t_0 + T$. It is said to be globally asymptotically stable if it is asymptotically stable and $\delta$ can be any arbitrarily large finite number.

**Remark 1.** The stability notations for dynamics systems with time delays are slightly different from the Definition 1. The reason stems from that time delay systems have a segment of initial condition, i.e., $x_{t_0}$. Therefore, for time delay systems the maximal value $\| x_{t_0} \|_c < \delta$ is considered as the initial condition assumption in Definition 1.

III. PROBLEM FORMULATION AND PRELIMINARIES

A networked control system with synchronously switching controllers and delays is considered in this paper; the delays are considered piecewise constant. Comprising hybrid dynamics as well as delay system dynamics it can be described by a switched delay differential functional of the form

$$\dot{x} = f_{\sigma(t)}(x, x_t, \tau_{\sigma(t)})$$

(1)
where \( \sigma(t) \) is a piecewise continuous switching signal takes value on the set \( \mathcal{S} := \{1, \ldots, N\} \) with \( \sigma(t) = i, i \in \mathcal{S} \) for some \( t \in [t_i, t_{i+1}) \). \( \tau_0 = \tau(t) \in \mathbb{R}^+ \) represents the piecewise constant time delay, and \( x_t \in \mathbb{R}^n \) specifies the initial condition of (1) having the form

\[
x_t = x(t + \theta), \theta \in [-\tau_0, 0]
\]

(2)

Note that without switching, \( i.e. \sigma(t) \) constant, the classical delay differential functional modeling time delay systems [12] is recovered. With zero time delay \( \tau_0 = 0 \), (1) represents the switched system model in the notation of [17].

In the remainder of this paper we focus on LTI switched time delay systems which have the form

\[
\dot{x}(t) = A_i x(t) + A_{ii} x(t - \tau_i) \\
x_t = x(t + \theta), \theta \in [-\tau_0, 0]
\]

(3)

where \( A_i, A_{ii} \in \mathbb{R}^{n \times n} \). It is assumed that there is no jump in the state (state reset) of (3) at the switching instants, \( i.e. \), the solution \( x(t) \) is continuous everywhere. A finite number of switches is assumed in finite time.

In contrast to conventional switched systems, the proposed control structure comprises switching of controllers and switching time delays. An analysis method for such systems has not been published so far.

### 3.1 Stability of time delay systems

Most prominent approaches for the stability analysis of time delay systems are the Lyapunov-Krasovskii approach and the Lyapunov-Razumikhin approach. The Krasovskii approach may provide a necessary and sufficient stability condition, the Krasovskii functional includes the retarded states and its computation is difficult. The Razumikhin approach, see \( e.g. \) [12], circumvents the difficulties by considering the Lyapunov function \( V(t, x(t)) \) depending on the present state \( x(t) \) only. Asymptotic stability is guaranteed if the Lyapunov function \( \zeta V(t, x(t)) \), \( \zeta > 1 \), does not exceed

\[
\bar{V}(t, x_t) = \sup_{\theta \in [-\tau, 0]} V(t + \theta, x(t + \theta))
\]

(4)

\( i.e. \), the largest value of the Lyapunov function over the past time delay interval \( [-\tau, 0] \) [11]. Assuming a quadratic Lyapunov function \( V(t, x(t)) = x(t)^T P x(t) \) the delay-dependent stability condition can be expressed as LMI. Consider therefore the LTI time delay system (3) without switching.

**Corollary 1.** [12] The LTI time delay system (3) is asymptotically stable if there exists a real symmetric matrix \( P > 0 \) and real scalars \( x > 0, x_1 > 0 \) such that

\[
\begin{pmatrix}
  M & -P A_1 A_0 & -P A_1^2 \\
  -A_1^T A_0^T P & -2P & 0 \\
  -(A_1^2)^T P & 0 & -x_1 P
\end{pmatrix} < 0
\]

(5)

where \( M = \frac{1}{2}(P(A_1 + A_0) + (A_1 + A_0)^T P) + (x + x_1) P \).

**Proof.** See [12].

### 3.2 Stability of switched systems

It is well known that switching between stable subsystems may result in instability of the switched system [3, 4]. Let \( V_i \) denote the Lyapunov function associated with subsystem \( i \). An important method for the stability analysis of switched systems is based on the construction of a common Lyapunov function \( V(x) = V_i(x) \) for all \( i \in \mathcal{S} \). Its existence guarantees stability for arbitrary switching sequences. However, a common Lyapunov function is generally difficult to find, typically they are found analytically only for certain system classes, such as linear systems with commuting \( A \)-matrices [18].

An alternative method to analyze the stability of switched systems is by a piecewise continuous Lyapunov function [5–7]. A (piecewise) continuous Lyapunov function \( V_i \) is associated to each subsystem \( i \), where in general \( V_i(x) \neq V_j(x) \) holds if \( i \neq j \). While the Lyapunov function \( V_i \) decreases when \( i \)th subsystem is active, it could however increase when subsystem \( i \) is inactive. The concept of piecewise continuous function is to restrict \( V_i \) at consecutive instants \( t_k > t_j \) such that

\[
V_i(x(t_k)) - V_i(x(t_j)) \leq -h(||x(t_j)||), \quad \forall i \in \mathcal{S}
\]

(6)

where \( h(\cdot) \) is a positive continuous function with \( h(0) = 0 \). By requiring the sequence of Lyapunov function values to decreasing at the switching instants for each subsystem, asymptotical stability of the switched systems is then guaranteed.

## IV. STABILITY OF SWITCHED TIME DELAY SYSTEMS

In this section, sufficient conditions for the stability of switched systems with switching time delay are presented. The concept of piecewise continuous Lyapunov functions is extended, a common Lyapunov function is derived for the special class of symmetric systems.
4.1 Piecewise continuous Lyapunov function by Razumikhin approach

Consider the switched time delay system given by (3). The following theorem extends the classical Razumikhin theorem [11] to switched systems with piecewise continuous time delays stating a sufficient condition for stability.

**Theorem 1.** A switched time delay system (3) is asymptotically stable if there exists a continuously differentiable positive definite function $V_i$ for each subsystem $i \in \mathcal{P}$, active in the time interval $t \in [t_j, t_{j+1})$, such that

(i) $V_i(t, 0) = 0$, $V_i(t, x(t)) > 0$ for $x \in \mathbb{R}^n \setminus \{0\}$,
(ii) $u_1(||x(t)||) \leq V_i(t, x(t)) \leq u_2(||x(t)||)$,
(iii) $V_i(t, x(t)) \leq -w(||x(t)||)$, whenever $V_i(t + \theta, x(t + \theta)) \leq p(V_i(t, x(t)))$ with $\theta \in [-\tau_i, 0]$, $t \in [t_j, t_{j+1})$.
(iv) $V_i(t_k, x_{t_j}) = \bar{V}_i(t_{j+1}, x_{t_{j+1}}) \leq -h(||x_{t_{j+1}}||)$, $t_k > t_j$ are consecutive switching instants for which $\sigma(t_k) = \sigma(t_j) = i$.

**Proof.** For the sake of simplicity, the switched time delay system (3) is assumed to contain two subsystems $\dot{x} = f_1(x, x_{\tau_1})$ and $\dot{x} = f_2(x, x_{\tau_2})$. The switched time delay system starts, without loss of generality, with subsystem 1 at $t_0$. For any given $\varepsilon_1 > 0$, let $0 < \delta_1 < u_2^{-1}(u_1(\varepsilon_1))$. Then for any $t_0$ and any given initial condition $x_{t_0} = x(t_0 + \theta)$ with $\theta \in [-\tau_1, 0]$ where $||x_{t_0}|| < \delta_1$ it is $V_1(t_0, x_{t_0}) \leq u_2(\delta_1) < u_1(\varepsilon_1)$ by (ii). The subsystems are asymptotically stable, with (iii) using standard techniques as e.g., from [12] it can be shown that $V_1(t, x(t)) < V_1(t_0, x_{t_0})$, hence $V_1(t, x(t)) < u_1(\varepsilon_1) \forall t : t_1 \geq t > t_0$, where $t_1$ marks the switching instant from subsystem 1 to subsystem 2. By (iii) it follows $||x(t)|| < \varepsilon_1 \forall t : t_1 \geq t > t_0$. In fact, $||x(t)|| \to 0$ as $t_1 \to \infty$.

At the time instant $t_1$ the execution enters subsystem 2, where $t_1 > t_0 + \sup_{[0, \tau]}(\tau_1) - \tau_1$ is required for the proper definition of the initial condition for subsystem 2. As there is no jump in the states at the switching instant by assumption, the initial condition for subsystem 2 is given by $x_{t_1} = x(t_1 + \theta)$ with $\theta \in [-\tau_2, 0]$. By (iii), using the same arguments as above, the associated Lyapunov function $V_2(t, x(t)) < V_2(t_1, x_{t_1}) \forall t : t_2 \geq t > t_1$ where $t_2$ marks the switching instant from subsystem 2 back into subsystem 1. With $||x_{t_1}|| < \varepsilon_1$ there is a $\varepsilon_2$ such that $0 < \varepsilon_1 < u_2^{-1}(u_1(\varepsilon_2))$ and using the same arguments as above $||x(t)|| < \varepsilon_2 \forall t : t_2 \geq t > t_1$. Again, $||x(t)|| \to 0$ as $t_2 \to \infty$ holds. Further, by (iv) $V_1(t_k, x_{t_{j+1}}) \leq V_1(t_k, x_{t_{k+1}}) - h(||x_{t_{k+1}}||) < u_1(\varepsilon_1)$, hence $||x_{t_{k+1}}|| < \varepsilon_1$. With the same arguments it can be shown that $\bar{V}_2(t_k, x_{t_{k+1}}) < u_1(\varepsilon_2)$ where $t_3$ marks the switching instant from subsystem 1 to subsystem 2.

In fact, at each switching instant $t_j$ the Lyapunov function $\bar{V}_{\sigma(t_j)}(t_j, x_{t_j})$ is bounded by $u_1(\varepsilon_2)$ and therefore is limited by a $z \geq 0$, $z = \lim_{j \to \infty} \bar{V}_{\sigma(t_j)}(t_j, x_{t_j})$. As a result for each subsystem $i$ and any two consecutive switching instants $t_k > t_j$, $\sigma(t_k) = \sigma(t_j) = i$, by (iv) it follows,

$$0 = \lim_{k \to \infty} \bar{V}_i(t_k, x_{t_k}) - \lim_{j \to \infty} \bar{V}_i(t_j, x_{t_j}) \leq \lim_{j \to \infty} [ -h(||x_{t_j}||) ] \leq 0.$$  

This implies $\lim_{j \to \infty} ||x_{t_j}|| = 0$ for each $i$, and thus leads to $\lim_{t \to \infty} x(t + \theta) = 0$ for $\theta \in [-\tau_i, 0]$ which completes the proof. $\square$

**Remark 2.** Theorem 1 applies to switched time delay systems with any finite number of subsystems. If $h(\varepsilon) \geq 0$ for $\varepsilon > 0$ in (iv), then the switched time delay system is stable.

**Remark 3.** Without the restriction to the time interval of activity $t \in [t_j, t_{j+1})$, conditions (i)–(iii) basically represent the classic Razumikhin theorem ensuring asymptotic stability [12] for subsystem $i$ without switching. They guarantee the measure $V_i(t, x_t)$ of the states to decrease during the time subsystem $i$ is active. If each of the subsystems is asymptotically stable according to the Razumikhin approach, then those conditions are automatically satisfied. Condition (iv) ensures the sequence of the state measure to decrease at consecutive switching instants for each subsystem similar to (6). Accordingly, in the case of a time delay system without switching, i.e. $\sigma(t) =$ constant, Theorem 1 reduces to the original Razumikhin theorem [11] (condition (iv) then follows from (iii) and is no longer needed). If the time delay is set to zero, i.e. $\tau_{\sigma(t)} = 0$, then the standard switched system is given and the result from [7] on the stability of switched systems is recovered. For constant time delay, i.e. $\tau_{\sigma(t)} =$ constant, a similar result as in [19] is achieved.

4.2 Common Lyapunov function for symmetric systems

In this subsection, we restrict ourself to a class of LTI switched time delay systems of the form (3) with symmetric system matrices $A_{i0} = A_{i0}^T$ and $A_{i1} = A_{i1}^T$ for all $i \in \mathcal{P}$.

**Proposition 1.** The system (3) with symmetric system matrices is asymptotically stable for arbitrary
switching sequences if for each subsystem \( i \) there exist a real symmetric matrix \( P_i > 0 \) and real scalars \( \varepsilon_0 > 0 \), \( \varepsilon_1 > 0 \) such that
\[
\begin{pmatrix}
M_{i,0} & -P_i A_{i1} A_{i0} - P_i A_{i1}^2 \\
-A_{i0}^T A_{i1} P_i & -\varepsilon_0 P_i & 0 \\
(A_{i1}^2)^T P_i & 0 & -\varepsilon_1 P_i
\end{pmatrix} < 0 \tag{7}
\]
where \( M_{i,0} = \frac{1}{\varepsilon_1} [ P_i (A_{i0} + A_{i1}) + (A_{i0} + A_{i1})^T P_i ] + (\varepsilon_0 + \varepsilon_1) P_i \).

**Proof.** The LMI (7) ensures the asymptotic stability of each subsystem \( i \) using the delay-dependent Razumihkhin approach and the Lyapunov function \( V(t, x(t)) = x^T(t) P_i x(t) \). Since \( P_i > 0 \), symmetric, there exists a \( U_i^T = U_i \) such that
\[
U_i^T P_i U_i = \Sigma_i,0 = \text{diag}(\chi_{i,1}, \ldots, \chi_{i,n})
\]
where \( \chi_{i,j} > 0 \), \( j = 1, \ldots, n \). Pre- and post-multiply (7) by \( U_i^T \) and \( U_i \), we have
\[
\begin{pmatrix}
\tilde{M}_{i,0} & \Sigma_{i,0} \tilde{A}_{i1} \tilde{A}_{i0} & \Sigma_{i,0} \tilde{A}_{i1}^2 \\
-\tilde{A}_{i0}^T \tilde{A}_{i1}^T \Sigma_{i,0} & -\varepsilon_0 \Sigma_{i,0} & 0 \\
(\tilde{A}_{i1}^2)^T \Sigma_{i,0} & 0 & -\varepsilon_1 \Sigma_{i,0}
\end{pmatrix} < 0 \tag{8}
\]
where \( \tilde{A}_{i0} = U_i^T A_{i0} U_i, \quad \tilde{A}_{i1} = U_i^T A_{i1} U_i, \quad \tilde{M}_{i,0} = \frac{1}{\varepsilon_1} [ \Sigma_{i,0} (\tilde{A}_{i0} + \tilde{A}_{i1}) + (\tilde{A}_{i0} + \tilde{A}_{i1})^T \Sigma_{i,0} ] + (\varepsilon_0 + \varepsilon_1) \Sigma_{i,0} \).

Pre- and post-multiply (8) by \( \Sigma^{-1} \) and take the transpose of the resulting matrix, it leads to
\[
\begin{pmatrix}
\tilde{M}_{i,0}' & \Sigma_{i,0}^{-1} \tilde{A}_{i1} \tilde{A}_{i0} & \Sigma_{i,0}^{-1} \tilde{A}_{i1}^2 \\
-\tilde{A}_{i0}^T \tilde{A}_{i1}^T \Sigma_{i,0} & -\varepsilon_0 \Sigma_{i,0}^{-1} & 0 \\
(\tilde{A}_{i1}^2)^T \Sigma_{i,0} & 0 & -\varepsilon_1 \Sigma_{i,0}^{-1}
\end{pmatrix} < 0 \tag{9}
\]
where \( \tilde{M}_{i,0}' = \frac{1}{\varepsilon_1} [ \Sigma_{i,0}^{-1} (\tilde{A}_{i0} + \tilde{A}_{i1}) + (\tilde{A}_{i0} + \tilde{A}_{i1})^T \Sigma_{i,0}^{-1} ] + (\varepsilon_0 + \varepsilon_1) \Sigma_{i,0}^{-1} \).

Using \( 0 < \lambda_{i,1} < 1 \) which satisfies
\[
\dot{\lambda}_{i,1} \chi_{i,1} + (1 - \lambda_{i,1}) \chi_{i,1}^{-1} = 1
\]
to \( \lambda_{i,1} \times (8) + (1 - \lambda_{i,1}) \times (9) \), and using the symmetry of \( A_{i0} \) and \( A_{i1} \), we obtain
\[
\begin{pmatrix}
\tilde{M}_{i,1} & \Sigma_{i,1} \tilde{A}_{i1} \tilde{A}_{i0} & \Sigma_{i,1} \tilde{A}_{i1}^2 \\
\tilde{A}_{i0}^T \tilde{A}_{i1} \Sigma_{i,1} & -\varepsilon_0 \Sigma_{i,1} & 0 \\
(\tilde{A}_{i1}^2)^T \Sigma_{i,1} & 0 & -\varepsilon_1 \Sigma_{i,1}
\end{pmatrix} < 0 \tag{10}
\]
where \( \Sigma_{i,1} = \text{diag}(\chi_{i,1}, \chi_{i,1}^{-1}, 1, \chi_{i,2}, \ldots, \chi_{i,n}) \) and \( \tilde{M}_{i,1} = \frac{1}{\varepsilon_1} [ \Sigma_{i,1} (\tilde{A}_{i0} + \tilde{A}_{i1}) + (\tilde{A}_{i0} + \tilde{A}_{i1})^T \Sigma_{i,1} ] + (\varepsilon_0 + \varepsilon_1) \Sigma_{i,1} \).

In the same way for \( 0 < \lambda_{i,2} < 1 \), we can derive \( \Sigma_{i,2} = \text{diag}(1, \chi_{i,2}, \ldots, \chi_{i,n}) > 0 \). Repeating the procedure, we obtain \( \Sigma_{i,n} = I \) and (7) becomes
\[
\begin{pmatrix}
\frac{2}{\varepsilon_i} (\tilde{A}_{i0} + \tilde{A}_{i1}) + (\varepsilon_0 + \varepsilon_1) I & \tilde{A}_{i0} \tilde{A}_{i1} \tilde{A}_{i1}^2 \\
\tilde{A}_{i0}^T \tilde{A}_{i1}^T & -\varepsilon_0 I & 0 \\
(\tilde{A}_{i1}^2)^T & 0 & -\varepsilon_1 I
\end{pmatrix} < 0. \tag{11}
\]

Pre- and post-multiply (11) by \( U_i \) and \( U_i^T \), we have
\[
\begin{pmatrix}
\frac{2}{\varepsilon_i} (A_{i0} + A_{i1}) + (\varepsilon_0 + \varepsilon_1) I & A_{i0} A_{i1} \ A_{i1}^2 \\
A_{i0}^T A_{i1}^T & -\varepsilon_0 I & 0 \\
A_{i1}^2)^T & 0 & -\varepsilon_1 I
\end{pmatrix} < 0. \tag{12}
\]

From comparison with (7) it follows that each subsystem \( i \) satisfies (7) with the Lyapunov function \( V(t, x(t)) = x^T(t) P_i x(t) \) representing the common Lyapunov function. Since each subsystem possesses a common Lyapunov function \( V(t, x(t)) \), the switching of subsystems implies change of \( V(t, x) \). For any consecutive switchings \( t_k > t_j \) of subsystem \( i \), by the continuity of Lyapunov function it implies
\[
\tilde{V}(t_k, x_{k}) - \tilde{V}(t_j, x_{j}) \leq -h(||x_{j}||) \tag{13}
\]
where \( h(\cdot) \) is defined as in Theorem 1. By the same argument as in Theorem 1, (13) follows
\[
0 = \lim_{k \to \infty} \tilde{V}(t_k, x_k) - \lim_{j \to \infty} \tilde{V}(t_j, x_j) \leq \lim_{j \to \infty} [-h(||x_{j}||)] \leq 0.
\]

This implies \( \lim_{j \to \infty} ||x_{j}|| = 0 \) for each \( i \) and proves the asymptotic stability for arbitrary switching sequences. \( \square \)

**Remark 4.** The symmetric requirement of system matrices in (3) can be generalized to systems with matrices satisfying
\[
T A_{i0} = A_{i0}^T T, \quad T A_{i1} = A_{i1}^T T \tag{14}
\]
for some transformation matrix \( T > 0 \) of appropriate dimension.

**Remark 5.** The result is an extension of [18] where a common Lyapunov function for symmetric LTI systems without time delay is derived, and of [20] where the time delay is assumed constant.
V. TOWARDS PERFORMANCE ORIENTED CONTROL

In this section, the potential benefits of the switched time delay systems approach with respect to performance are explored in two novel control approaches for NCS. Aiming for improved control performance, in the first approach the controller is selected depending on the current network time delay. In the second approach, the combined control of the plant and the network QoS is considered with the goal of good control performance and efficient use of network resources. The main difference between these approaches in terms of switched time delay systems is the generation of the switching signal $\sigma(t)$: it is generated from the time delay monitoring in the time delay dependent controller selection approach, and from some cost function depending on the system state and the network cost in the QoS control approach.

5.1 Network time delay dependent controller selection

With the goal of improving control performance the appropriate controller is selected depending on the time delay. The control system consists of the plant, the communication network that introduces a piecewise constant time delay taking values $\tau_i$, $i \in \mathcal{P}$, a bank of controllers and a decision maker, as illustrated in Fig. 1. Each controller $i$ is designed by a delay-dependent approach, e.g. Corollary 1, to stabilize the plant for the associated time delay value $\tau_i$. The decision maker monitors the time delay and chooses the appropriate controller from the controller bank.

In most relevant applications, the time delay in the communication network changes in an unpredictable manner. Accordingly, stability has to be guaranteed for arbitrary switching sequences. For the special class of symmetric system matrices stability is guaranteed by Proposition 1. The stabilizing controller switching signal can be generated from the time delay monitoring only, i.e. $\sigma(t) = \sigma(\tau_i(t))$. The time delay and the controller are assumed to switch synchronously.

The control performance benefit is studied in the following simulation example with symmetric system matrices.

Example 1. Consider a communication network where the time delay switches between two possible values, the high time delay $\tau_1 = 250$ ms, and the low time delay $\tau_2 = 100$ ms. The switched time delay system (3) is given with symmetric system matrices by

$$A_{10} = A_{20} = \begin{bmatrix} -1 & -1 \\ -1 & 0 \end{bmatrix}, \quad A_{11} = k_i \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

where $A_{10} = A_{10}^T = A_{20} = A_{20}^T$ is the unstable second order plant, $A_{11}$ represents the state feedback gain matrix with a pre-defined symmetric structure. The gains $k_i$ are determined by iteratively solving (5) with $\lambda_{10} = \lambda_{11} = 1$, $\lambda_{20} = \lambda_{21} = 2$ using the MATLAB LMI toolbox. The gains $k_1 = 1.79$ and $k_2 = 3.01$ represent the highest gains where the LMI (5) is still feasible. The corresponding positive definite matrices are

$$P_1 = \begin{bmatrix} 1.757 & -0.6888 \\ -0.6888 & 2.446 \end{bmatrix}, \quad P_2 = \begin{bmatrix} 0.6258 & -0.1375 \\ -0.1375 & 0.7652 \end{bmatrix}.$$

With the controller gain $k_1$ designed for the high time delay $\tau_1$, the system is stabilized also for low time delay $\tau_2$, a feasible solution of (5) exists with

$$P_s = \begin{bmatrix} 0.2776 & -0.1788 \\ -0.1788 & 0.4564 \end{bmatrix}.$$

According to Proposition 1 the system is stable for arbitrarily switching time delay, for both cases, with the constant controller $k_1$ designed for the worst case (highest) time delay, and with a synchronous switching controller. In simulations the control performance for these two cases is compared. The network initially provides a low time delay communication $\tau_2$. The subsequent change of the time delay is depicted in Fig. 2a. The initial condition for the state is given by $x_{0} = [0, 1]$, $-\tau_2 < \theta < 0$. The system trajectories are computed using the dde23 solver from MATLAB. Without adaption of the controller to a change in network time delay, i.e., the worst case controller $k_1$, the state trajectories show a rather slow convergence towards zero, see dashed line in Fig. 2b,c. The trajectory stays within a ball around the origin of radius $\|x\| = 0.1$ after $t_{0.1} = 1.15$ s. With a
after switchings. However, this assumption is no longer
converge faster to the origin, with synchronous switching controller the state trajectories
30

\[ V_t(x) = \sum_{i=1}^{n} \alpha_i V_i(x) \]

The switching signal has to be generated as a function of the time delay and the Lyapunov function adding the time delay of the subsystems in addition to the time delay.

Remark 6. For the general class of non-symmetric systems according to Theorem 1, the decision maker needs to monitor the evolution of the Lyapunov functions of the subsystems in addition to the time delay. The switching signal has to be generated as a function of the time delay and the Lyapunov function value \( \sigma(t) = \sigma(t_i(t), \dot{V}_i(t)) \). If all subsystems are asymptotically stable then only condition (iv) of Theorem 1 has to be evaluated, see Remark 3. There may, however, exist time delay switching instances where the evolution of the Lyapunov function does not allow the switching of the controller. How the stability of the system can still be guaranteed is subject of future research. For non-symmetric systems, it is furthermore desirable to replace the Lyapunov function condition by a condition which is easier to check, e.g., by a dwell-time condition.

Remark 7. Note that in the considered system (3), controller and plant are lumped into a single delay differential function assuming no state jumps, and the initial condition \( x_t \) for each time delay subsystem well defined after switchings. However, this assumption is no longer true in a real NCS application due to the spatial separation of controller and plant as the following shows. Consider the plant \( \dot{x} = f(x, u(t - \tau_i)) \) and the proportional state feedback controller \( u(t) = K_i x(t) \). Controller and time delay are switched at time instant \( t_q \) to \( K_j \) and \( \tau_j \), respectively. If \( \tau_i > \tau_j \), then there is an overlap in the control signal \( u \) arriving delayed at the plant over a time interval \( \tau_j - \tau_i \). Accordingly, if \( \tau_i < \tau_j \), the control signal remains undefined for the time interval \( \tau_j - \tau_i \). The definition of the control signal over this time interval represents a degree of freedom during the design. It has an influence on the evolution of the Lyapunov function.

A deeper analysis of this case is beyond the scope of this paper.

Remark 8. Markovian jump systems (MJS) with mode-dependent time delays [21] represent an alternative approach for the controller switching depending on piecewise constant time delay. The main difference is that the design of such control system relies on the knowledge of the probabilistic transition rates of the time delay values, while in the proposed approach the time delay values are monitored. A thorough analysis and comparison of both approaches are subject to further research.

5.2 Quality-of-Service control

Quality-of-Service (QoS) refers to the capability of a network to provide different communication quality to different network traffic. In fact, it allows the adjustment, hence the control, of the communication quality. In the current IPv6 a finite number of data classes is already implemented. Guaranteed high communication quality, e.g. low time delay, requires the provision of large network resources, i.e., induces high network cost. Considering the finite resources of a network, it is desirable that every application only consumes as much of them as required to guarantee a certain level of performance. Inspired by the QoS concept, a novel control concept is proposed here aiming the conjoint control of the control system itself and, indirectly for the network resources.

The basic control architecture is similar to the previous application as illustrated in Fig. 3. The finite number of possible time delay values is assumed to be known. For each time delay value \( \tau_i \) a stabilizing controller \( i \) is designed using a delay-dependent approach. The decision maker chooses the appropriate time delay controller pair. The main difference to the delay-dependent controller selection approach is the generation of the switching signal, i.e., the switching logic in the decision maker.
The two-stage procedure proposed in this paper to provide a deeper analysis. In this work find as it is hybrid, non-convex, in general, and contains to this optimization problem is generally difficult to cost associated with a certain time delay. The solution Fig. 3. Control architecture for NCS with QoS control as a switched system.

The goal here is to balance control performance versus network cost. For good control performance, generally, a low time delay connection is desirable, however high network cost are then induced. The cost-performance trade-off can be formulated as an optimization problem with the goal to find the optimal switching signal $\sigma(t)$. As a control performance measure the time integral over a quadratic function of the states is considered. The network cost are assumed to be time-based, i.e., increase with connection usage time. The resulting optimization problem can be stated as follows

$$\min_{\sigma(t)} J = \int_{0}^{\infty} x^T(t) Q(t) x(t) + \eta_{\theta(t)} \, dt$$  \hfill (15)$$

where $Q(t)$ is a weighting matrix of appropriate dimension and $\eta_{\theta(t)} = \eta(\tau_{\theta(t)})$ represents the network cost associated with a certain time delay. The solution to this optimization problem is generally difficult to find as it is hybrid, non-convex, in general, and contains delay differential equations. It is beyond the scope of this paper to provide a deeper analysis. In this work the two-stage procedure proposed in [16] is applied to solve the optimization problem numerically over a finite horizon. Number $k$ and a sequence of switchings $\{\{t_1, \sigma(t_1)\}, \ldots, \{t_k, \sigma(t_k)\}\}$ are fixed a priori, in the second stage the switching times are optimized. An alternative hybrid optimal control approach is proposed in [22], however, without considering time delay. For symmetric systems Proposition 1 straightforwardly applies, i.e., the solution $\sigma^*(t)$ of the optimization problem stabilizes the switched time delay system and guarantees a balanced trade-off between control performance and network cost. For non-symmetric systems, the condition (iv) of Theorem 1 also has to be satisfied for stability, and conditions (i)–(iii) are satisfied by the stability of each subsystem, see Remark 3. Accordingly, the optimization problem (15) has to be solved subject to condition (iv) of Theorem 1. The resulting solution $\sigma^*(t)$ stabilizes the switched time delay system, and achieves the desired trade-off.

The benefits of QoS control are studied in the following simulation example with non-symmetric system matrices. A comparison between the QoS control approach and non-switching approaches is performed with respect to control performance and network cost.

Example 2. Consider a QoS communication network with two different traffic classes, with a time delay of $\tau_1 = 250$ ms and $\tau_1 = 100$ ms, respectively. The corresponding network cost given by $\eta(\tau_1) = 1$ s$^{-1}$ and $\eta(\tau_2) = 3$ s$^{-1}$, i.e., higher cost for lower time delay. An unstable asymmetric plant is considered, the controller structure is pre-defined as in Example 1:

$$A_{20} = A_{20} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \quad A_{11} = k_i \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

with $A_{10} = A_{20}$, the plant in (3), and $A_{11}$ the controllers. The feedback gains $k_i$ are designed in the same way as in Example 1, i.e., by determining the largest value where the LMI (5) is still feasible with $z_{10} = z_{20} = 1$ and $z_{11} = z_{21} = 2$ through iteratively solving (5). The computed result is $k_1 = 1.58$, $k_2 = 2.93$ with the corresponding positive definite matrices

$$P_1 = \begin{bmatrix} 24.35 & -12.18 \\ -12.18 & 24.35 \end{bmatrix}, \quad P_2 = \begin{bmatrix} 10.53 & -5.281 \\ -5.281 & 10.53 \end{bmatrix}$$

The optimization problem (15) is solved numerically with $Q(t) = I$. Following the approach in [16], the number of switches $k = 2$ is fixed prior to optimization. The initial mode is defined to be $\sigma(0) = 1$, i.e., initially the controller $k_1$ with time delay $\tau_1$ is active. The order of the switchings is fixed as $\{(t_1, 2), (t_2, 1)\}$, meaning that switching into subsystem 2 takes place at $t = t_1$. The initial condition for the state is given by $x_0 = [0, 1]$, $-\tau_1 < t < 0$. The optimization problem is solved off-line for a time horizon of 5 s using the fminsearch algorithm from the MATLAB optimization toolbox and the dde23 solver resulting in the switching times $t_1 = 0$ s and $t_2 = 0.58$ s, respectively. The first switch is degenerated, which redefines the initial mode to controller 2/\tau_2. Hence, there is only one switch between the subsystems, the overall switched system is stable due to the stability of the subsystems. In Fig. 4 the evolution of the time delay and the state trajectories are presented for the QoS controlled system, as well as for the standard approach with high or low time delay only, i.e., without switching. The trajectories of the QoS controlled system stay within the ball of radius $\|x\| = 0.1$ after $t_{0.1} = 0.66$ s,
VI. CONCLUSION

Motivated by novel control approaches for networked control systems (NCS), this paper presents a first approach, towards switched time delay systems with piecewise constant time delay and gives sufficient stability conditions. For a switched system with linear time invariant time delay subsystems, a piecewise Lyapunov function is constructed using the Razumikhin approach. Asymptotic stability is guaranteed by a strictly decreasing sequence of the values of a measure for the retarded states. For the restricted class of symmetric systems a common Lyapunov function is derived ensuring asymptotic stability for arbitrary switching sequences. The benefits of the switched time delay system approach for the performance is demonstrated in two novel control approaches for NCS. In the first approach, the time delay is monitored and an appropriate controller is selected. The second approach targets the conjoint control of the system controller and network QoS, i.e. time delay, such that an optimal tradeoff between network resource usage and control performance is achieved. Both approaches are very promising for future NCS.

Table 1. Control performance and induced network cost.

<table>
<thead>
<tr>
<th></th>
<th>$t_{0.1}$ (s)</th>
<th>Network cost (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS control</td>
<td>0.66</td>
<td>6.15</td>
</tr>
<tr>
<td>Controller 1/τ₁ only</td>
<td>1.58</td>
<td>5</td>
</tr>
<tr>
<td>Controller 2/τ₂ only</td>
<td>0.63</td>
<td>15</td>
</tr>
</tbody>
</table>

close to the unswitched system with low delay communication (+4.6%), see Table 1. However, with QoS control the low delay connection is active for 0.58 s only, the network cost is 60% less than for the unswitched system with low delay. As desired, a tradeoff between control performance and network cost is achieved.

Unresolved problems that will be addressed in future research include that the optimization of the switching instants is currently performed off-line. An implementable online optimization algorithm is desirable that computes the next switching instants under the stability (iv) of Theorem 1. Further, synchronous switching condition of the controller and the time delay might be challenging in real applications; the effect of non-synchronized switching needs to be investigated.

In summary, the proposed delay-dependent controller selection approach and the QoS control concept seem and very promising for future NCS applications.

REFERENCES


© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

Sandra Hirche was born in Germany in 1974. She received the diploma engineering degree in mechanical engineering and transport systems in 2002 from the Technical University Berlin, Germany, and the doctor of engineering degree in electrical engineering and computer science in 2005 from the Technische Universität München, Munich, Germany. Since 2005–2007 she has been a JSPS (Japanese Society for the Promotion of Science) postdoc with the Tokyo Institute of Technology, Tokyo, Japan. Since 2008 she holds an associate professor position on information-oriented control at the Institute of Automatic Control Engineering, Technische Universität München. Her research interests include control over communication networks, networked control systems, cooperative control, human-machine interaction, mechatronics, multimodal telepresence systems, and perception-oriented control.

Chih-Chung Chen was born in Taiwan in 1977. He received the B.S. degree in mechanical engineering from National Cheng-Kung University, Tainan, Taiwan in 1999 and the M.S. degree in mechanical engineering in 2005 from the Technische Universität München, Munich, Germany. He is currently Ph.D. student at the Institute of Automatic Control Engineering, Department of Electrical Engineering and Information Technology, Technische Universität München. His research interests include networked control systems, stochastic time delay systems and stochastic hybrid systems.

Martin Buss was born in Germany in 1965. He received the diploma engineer degree in electrical engineering in 1990 from the Technical University Darmstadt, Germany, and the doctor of engineering degree in electrical engineering from the University of Tokyo, Japan, in 1994. From 1995–2000 he has been senior research assistant and lecturer at the Institute of Automatic Control Engineering, Department of Electrical Engineering and Information Technology, Technical University Munich, Germany.

He was appointed full professor, head of the control systems group, Faculty IV – Electrical Engineering and Computer Science, Technical University Berlin, Germany, from 2000–2003. Since 2003 he is a full professor (chair) at the Institute of Automatic Control Engineering, Technische Universität München, Germany. His research interests include automatic control, mechatronics, multi-modal human-system interfaces, optimization, nonlinear, and hybrid discrete-continuous systems.