IMPROVED CONTROLLABILITY TEST FOR DEPENDENT SIPHONS IN S3PR BASED ON ELEMENTARY SIPHONS

Daniel Y. Chao

ABSTRACT

When siphons in a flexible manufacturing system (FMS) modeled by an ordinary Petri net (OPN) become unmarked, the net gets deadlocked. To prevent deadlocks, some control places and related arcs are added to strict minimal siphons (SMS) so that no siphon can be emptied. For large systems, it is infeasible to add a monitor to every SMS since the number of SMS or control elements grows exponentially with respect to the size of a Petri net. To tackle this problem, Li and Zhou propose to add control nodes and arcs for only elementary siphons. The rest of siphons, called dependent ones, may be controlled by adjusting control depth variables of elementary siphons associated with a dependent siphon after the failure of two tests. First, they test a Marking Linear Inequality (MLI); if it fails, then they perform a Linear Integer Programming (LIP) test which is an NP-hard problem. This implies that the MLI test is only sufficient, but not necessary. We propose a sufficient and necessary test for adjusting control depth variables in an S3PR to avoid the sufficient-only time-consuming linear integer programming (LIP) test (NP-complete problem) required previously for some cases. We theoretically prove the following: i) no need for LIP test for Type II siphons; and ii) Type I strongly n-dependent (n > 2) siphons being always marked. As a result, the total time complexity to check controllability of all strongly dependent siphons is no longer exponential but reduced to linear if all siphons are of Type I. The total time complexity is \(O(|E| + |D|)\) (order of the product of total number of elementary siphons and total number of dependent siphons) if all siphons are of Type II. A well-known S3PR example has been illustrated to show the advantages.

Key Words: Petri nets, siphons, controllability, FMS, S3PR.

I. INTRODUCTION

A flexible manufacturing systems (FMS) consists of a set of working processes (WP) competing for resources. A WP models a sequence of operations to manufacture a product. The circular wait for resources can bring the system into a deadlock [1–3] where some WP can never finish.

A Petri net model is constructed for an FMS. The analysis of this PN model is conducted and system properties are claimed. Liveness in Flexible Manufacturing Systems (FMS) modeled by ordinary Petri nets (OPN) is closely related to emptiable siphons. A siphon (resp. trap) \(S\) is a set of places where tokens can leak out (resp. inject in) into (resp. from) another set of places called complementary set \([S]\) of the siphon (resp. trap). Thus, these tokens stay either in \(S\) or \([S]\). \(S\) and \([S]\) together form the support of a so-called P-invariant. The total number of tokens \(S\) and \([S]\) is conservative. Once an
emptiable siphon is found, output transitions of places in the siphon can never be fired. Hence the net is not live and has deadlocks.

To prevent a siphon S from becoming empty of tokens, we often add a control place V_S and some control arcs so that $\{S\}$ plus V_S form part of the support of a new P-invariant. By controlling the initial number of tokens [denoted by $M_0(V_S)$] in V_S, we can limit the maximal of tokens leaking from S into $\{S\}$. We say that S is invariant-controlled.

The number of SMS or control elements grows in general exponentially with respect to the size of a Petri net. Hence for large systems, it is impractical to add a monitor to each SMS. Unlike other techniques, Li and Zhou [1–5] divide SMS into two kinds: elementary and dependent. A T-vector η is associated with each SMS S so that $\eta(t_i)$ is the number of tokens gained or lost from S by firing transition t_i once. A dependent siphon S_0 depends on elementary siphons S_1, S_2, \ldots, S_k if $\eta_0 = a_1\eta_1 + a_2\eta_2 + \cdots + a_k\eta_k$. If all a_i ($i = 1, 2, 3, \ldots, k$) are positive, then S_0 strongly depends on S_1, S_2, \ldots, S_k, otherwise if some a_i are negative, then S_0 is a weakly dependent siphon. The T-vectors for elementary siphons are mutually independent.

Li and Zhou [1, 4] add control nodes and arcs for only elementary siphons greatly reducing the number of control nodes and arcs. As a result, for complex systems, it is essential to apply the concept of elementary siphons to add monitors; the number of which is linear to the size of the nets modeling the systems.

After the failure of two tests, control depth variables of elementary siphons associated with a dependent siphon are adjusted to satisfy a Marking Linear Inequality (MLI).

First, the above MLI is tested; if it fails, then a Linear Integer Programming (LIP) test is performed, which takes exponential time due to the LIP’s non-polynomial complexity.

Thus, the MLI test is only a sufficient (rather than a necessary) test. Li and Zhou [5–7] further improve the above sufficient MLI test so that a dependent siphon that previously failed the MLI test may now satisfy the new sufficient test to avoid the LIP test.

We will develop a sufficient and necessary test, better than that of Theorem 1 of [1], so that in some cases where the test in Theorem 1 fails, the new test succeeds, thus avoiding the time-consuming LIP. Once it has failed, there is no need for the LIP test, as with Li and Zhou’s new approaches in [5–7], since the new test is necessary for the controllability.

We categorize siphons into two types and show that type II dependent siphons need no LIP test. Furthermore, we will show that strongly type I dependent siphons need no control if they depend on more than two (i.e., $n \geq 2$) elementary siphons. Thus, even the above MLI test can be avoided. These results are the first of their kind as explained below.

This is significant since the number of dependent siphons is exponential to the size of the net, even though that of elementary siphons is linear. Thus, the time to verify against the MLI for all dependent siphons is exponential as for previous approaches, however, the number of dependent siphons with $n < 3$ is polynomial. As a result, the total time complexity is reduced from exponential to polynomial.

Further, for an $n = 2$ dependent siphon, a simple algebraic test is both sufficient and necessary to determine whether control depth variables need to be adjusted. Thus, the time-consuming LIP test is completely eliminated. Thus, among all strongly dependent siphons, we need to apply the polynomial-time new MLI test to only $n = 2$ type I strongly dependent siphons with no LIP test.

The rest of the paper is organized as follows: Section II presents the basis (S^3PR, elementary siphons, and characteristic T-vectors) to understand the paper. Section III motivates the reader by presenting some simple examples. The results are proved and generalized in Section IV. A well-known S^3PR example has been illustrated to show the advantages in Section V. Finally, Section VI concludes the paper.

II. PRELIMINARIES

A marked Petri Net (PN) is defined by a quadruple $N = (P, T, F, M_0)$, where P is the set of places, T is the set of transitions, $F : (P \times T) \cup (T \times P) \rightarrow Z^+$ (the set of nonnegative integers) is the flow relation, and $M_0 : P \rightarrow Z^+$ is the net initial marking assigned to each place $p \in P$, $M_0(p)$ tokens. In the special case that the flow relation F maps onto $[0, 1]$; the Petri net is said to be ordinary (otherwise, general). The incidence matrix of N is a matrix $[N] : P \times T \rightarrow Z$ (the set of integers) indexed by P and T such that $[N](p, t) = F(t, p) - F(p, t)$ where $F(p, t)$ is the weight of the arc from place p to its output transition t, and $F(t, p)$ is the weight of the arc from transition t to its output place p.

The set of input (resp. output) transitions of a place p is denoted by $*p$ (resp. $*p$). Similarly, the set of input (resp. output) places of a transition t is denoted by $*t$ (resp. $*t$). Finally, an ordinary PN such that (s.t.) $\forall t \in T$, $|t^*| = |t| = 1$, is called a State Machine (SM).

Given a marking M, a transition t is enabled if $\forall p \in *t, M(p) \geq F(p, t)$, and this is denoted by $M[t^*]$. Firing an enabled transition t results in a new marking.
M_1, which is obtained by removing $F(p, t)$ tokens from each place $p \in \mathbf{t}$, and placing $F(t, p')$ tokens in each place $p' \in \mathbf{t}$ moving the system state from M_0 to M_1. Repeating this process, it reaches M' by firing a sequence $\sigma=t_1, t_2, \ldots, t_k$ of transitions. M' is said to be reachable from M_0; i.e., $M_0[\sigma \geq M']$.

A transition $t \in T$ is live under M_0 iff $\forall M \in R(N, M_0), \exists j \in R(N, M), t$ is fireable under M'. A PN is live under M_0 iff $\forall t \in T$, t is live under M_0. A Petri net is said to be deadlockfree, if at least one transition is enabled at every reachable marking.

A P-vector is a column vector $L: P \rightarrow Z$ indexed by P and a T-vector is a column vector $J: T \rightarrow Z$ indexed by T, where Z is the set of integers. For economy of space, we use $\sum L(p)p$ (resp. $\sum J(t)t$) to denote a P (resp. T)-vector.

P-vector I is a P-invariant I iff $I \neq 0$ and $I^t \cdot [N] = 0^T$. $||I|| = \{p \in P | I(p) \neq 0\}$ is called the support of I. I is called an initial marking 0 by I.

For a Petri net (N, M_0), a non-empty subset S (resp. τ) of places is called a siphon (resp. trap) if $S \subseteq S^\tau$ (resp. $\tau^* \subseteq \tau$), i.e., every transition having an output (resp. input) place in S has an input (resp. output) place in S (resp. τ). A transition in S^τ is called a sink transition of S. S is called an empty siphon at M_0 if $M_0(S) = \sum_{p \in S} M_0(p) = 0$. A minimal siphon does not contain a siphon as a proper subset. It is called a strict minimal siphon (SMS), denoted by S, if it does not contain a trap. A siphon is said to be controlled if it is always marked.

Property 1 ([1]). If I is a P-invariant of N, then given an initial marking M_0, $\forall M \in R(N, M_0), I \cdot M = I \cdot M_0$.

An initially marked $||I||$ can never become empty of tokens. The union of a set of $||I||$ forms another $||I||$. An emptiable siphon (or SMS) S can be obtained by deleting a complimentary set of places, denoted by $[S]$, from the union.

Property 2 (Property in [1]). For a given SMS S in an $S^3PR(N, S) \cup [S]$ is the support of a P-invariant of N.

Property 3 (Corollary 3 in [1]). Let S be a strict redundant SMS w.r.t. elementary siphons S_1, S_2, \ldots, S_n, and in an S^3PR. We have $[S_0] = [S_1] \cup [S_2] \cup \ldots \cup [S_n]$.

Definition 1. $N' = (P', T', F')$ is called a subnet of N where $P' \subseteq P$, $T' \subseteq T$, $F' \subseteq F \cap ((P' \times T') \cup (T' \times P'))$. A net N is strongly connected iff for every node pair $(n_i, n_j), n_i, n_j \in P \cup T$, there is a directed path from n_i to n_j. A subnet $N_i = (P_i, T_i, F_i)$ of N is generated by $X = \sum_{ \tau \in \mathbf{t} }$, if $F_i = F \cap (X \times X)$. It is an I-subnet, denoted by N_i, of N if $T_i = T_i \cap T$ is the I-subnet [the subnet derived from $(S, ^*S)]$ of an SMS S. Note that $S = P(N_i)$; S is the set of places in N_i.

S^3PR

The following definitions are adapted from [1]. The reader can refer to [1] for more details of the S^3PR model.

Definition 2 ([1]). A simple sequential process (S^2P) is a net $N = (P \cup \{p^0\}, T, F)$ where: (1) $p \neq 0$, $p^0 \notin P$ (p^0 is called the process idle or initial or final operation place); (2) N is strongly connected state machine (SM) and (3) every circuit of N contains the place p^0.

Transitions in p^0 and p^0 are called source and sink transitions respectively.

Definition 3 ([1]). A simple sequential process with resources (S^2PR), also called a working processes (WP), is a net $N = (P \cup \{p^0\} \cup P_1, T, F)$ so that (1) the subnet generated by $X = P \cup \{p^0\} \cup T$ is an S^2P: (2) $P_2 \neq \emptyset$ and $P \cup \{p^0\} \cap P_2 = \emptyset$; (3) $\forall p \in P, \exists p, p', p'' \in S$, $\exists p \in P, t \cap P_1 = t \cap P_2 = \emptyset$; (4) the two following statements are verified: $\forall r \in P, a, \exists \exists \exists \exists \emptyset \subseteq \emptyset \subseteq \emptyset \subseteq \emptyset \subseteq \emptyset$; (5) $\exists \exists p_0 \cap P = p_0 \cap P = \emptyset$. $\forall r \in P, p$ is called an operation place, $\forall r \in P, r$ is a resource place, $H(r) = r \cap \emptyset$ denotes the set of holders of r (operation places that use r). Any resource r is associated with a minimal P-invariant whose support is denoted by $\rho(r) = ||r \cup H(r)||$.

Definition 4 ([1]). A system of $S^2PR(N, S^3PR)$ is defined recursively as follows: (1) An S^3PR is defined as an S^3PR; (2) Let $N_i = (P_i, P_i \cup P, T_i, F_i)$, $i \in \{1, 2\}$ be two S^3PR so that $(P_i \cup P_0) \cap (P_i \cup P_0) = \emptyset$. $P_1 \cap P_2 = P_{C}(\neq \emptyset)$ and $T_1 \cap T_2 = \emptyset$. The net $N = (P \cup P_0 \cup P_1, T, F)$ resulting from the composition of N_1 and N_2 via P_2 (denoted by $N_1 \cup N_2$) defined as follows: (1) $P = P_1 \cup P_2$; (2) $P^0 = P_1^0 \cup P_2^0$; (3) $P_R = P_1 \cup P_2$; (4) $T = T_1 \cup T_2$ and (5) $F = F_1 \cup F_2$ is also an S^3PR. A path (resp. circuit, subnet) Γ (resp. ϵ, δ') in N is called a resource path (resp. circuit, subnet) if $\forall p \in \Gamma(\epsilon, \delta)$, $p \in P_R$.

An S^3PR is composed of some state machines (with choices) holding and releasing some common resources. Fig. 1(a) shows an example of S^3PR (solid part) and its controlled model (including dashed part) respectively. We construct an SMS based on the concept of handles.

Roughly speaking, a “handle” is an alternate disjoint path between two nodes. A PT-handle starts...
with a place and ends with a transition while a TP-handle starts with a transition and ends with a place.

A handle \(H \) to a subnet \(N' \) is a directed path from a node \(n_r \) in \(N' \) to a node \(n_c \) in \(N' \); any other node in \(H \) is not in \(N' \). In a XY-handle (\(X, Y = T \) or \(P \)), \(n_r \in X \) and \(n_c \in Y \). A virtual handle is a handle with only two nodes. We [8] constructed an SMS using the following:

Property 4 ([8]). (1) \(N_I \) is strongly connected. (2) A subnet \(N' \) is an \(I \)-subnet of a minimal siphon iff \(N' \) is maximal in the sense that each handle \(H \) in \(N' \) is a \(PP' \)- or \(TP' \)- or virtual \(PT' \)- handle and there are none of \(PP' \)-, \(TP' \)-, and virtual \(PT' \)- handles to \(N' \); (3) \(P(N') \) is an SMS iff there is a nonvirtual \(PT' \)-handle to \(N'' \), which is a subnet of \(N' \) without any \(TP' \)-handles.

There is a circuit in every \(N_I \) since it is strongly connected. Such a circuit \(c \) is called a core circuit containing at least two resources since deadlock occurs due to mutual waiting among resources.

The following procedure is based on this property:

Handle-Construction Procedure [8]. Given a core circuit \(c \): (1) add all \(PP' \)-handles (of the form \([r_1, i, p_1; t_1], p_1 \) an operation place, \(i = 1, 2, \ldots, n - 1, r_1 \in c \) and \(t_1 \in e \)) to \(c \). The resulting core circuit is called an expanded \(c^e \); (2) add all \(PP' \)- and \(TP' \)- handles that are part of \(I \)-subnet of an \(p(r) \) to \(c^e \) to form \(v \); (3) \(P(v) \) is an SMS if it does not contain an \(\rho(r) = H[r_j \cup \{ r \}, r \in P(v); \) (4) \(P(v') \) (the set of places in \(v' \)) is an SMS if it does not contain any other minimal siphon.

Example. For the net in Fig. 1(a), first find core circuit \(c_1 = \{p_9, p_1, p_2, p_9\} \). Second add TP-handles (starting from a transition and ending at a place) \([t_2, p_1, t_3, p_10]\) and \([t_9, p_9, t_5, p_0]\) to get \(v' \) and \(S_1 = P(v') = S_1 = \{p_9, p_10, p_3, p_6\}, S_2 = \{p_10, p_11, p_4, p_7\} \) for \(c_2 = \{p_9, p_10, p_11, t_3, p_10\} \). \(c_1 \) and \(c_2 \) form a compound circuit (denoted by \(c_1 \circ c_2 \)), from which we can synthesize a third \(S_3 = \{p_4, p_6, p_9, p_{10}, p_{11}\} \), called a compound siphon.

In [9], we propose a polynomial time algorithm to find elementary siphons in a graphical fashion, where we also show that an SMS can be synthesized from a strongly connected resource subnet in an \(S^3PR \). We further prove that each elementary siphon can be synthesized from an elementary resource circuit, while a strongly dependent siphon can be synthesized from a compound resource circuit, which consists of a number of elementary resource circuits \(c_1, c_2, \ldots, c_n \) such that \(c_i \cap c_{i+1} = \emptyset \), \(r_i \in P_R \) (i.e., \(c_i \) and \(c_{i+1} \) intersect at a resource place \(r_i \)).

2.2 Elementary siphons and characteristic \(T \)-vectors

This section defines elementary, dependent siphons and characteristic \(T \)-vectors.

Definition 5 ([11]). Let \(\Omega \subseteq P \) be a subset of places of \(N \). \(P \)-vector \(\dot{\lambda}_\Omega \) is called the characteristic \(P \)-vector of \(\Omega \) if \(\forall p \in \Omega, \dot{\lambda}_\Omega(p) = 1 \); otherwise \(\dot{\lambda}_\Omega(p) = 0 \). \(\eta \) is called
the characteristic T-vector of Ω, if $\eta^T = \lambda_1^T [N]$, where $[N]$ is the incidence matrix and ‘\cdot’ means a vector or matrix multiplication.

Physically, the firing of a transition t where $[\eta(t)] > 0$, $\eta(t) = 0$, and $[\eta(t)] < 0$ increases, maintains and decreases the number of tokens in S, respectively.

Definition 6 ([4]). Let $N = (P, T, F)$ be a net with $|P| = m$, which has k siphons S_1, S_2, \ldots, S_k, m, $k \in \mathbb{Z}^+$, where $\mathbb{Z}^+ = \{0, 1, 2, \ldots\}$. Define $[\lambda]_{k \times m} = [\lambda_1 \lambda_2 \cdots \lambda_k]^T$ and $[\eta]_{k \times n} = [\eta_1 \eta_2 \cdots \eta_k]^T$. $[\lambda]([\eta])$ is called the characteristic $P(T)$-vector matrix $[\lambda](\eta)$ of the siphons in N. Let $\eta_{S_1}, \eta_{S_2}, \ldots, \eta_{S_k}$, and $\eta_{S_1} = [\eta_{S_1}, \eta_{S_2}, \ldots, \eta_{S_k}]$ be an independent maximal set of matrix $[\eta]$. Then $\Omega_E = \{S_2, S_3, \ldots, S_k\}$ is called a set of elementary siphons. $S \notin \Omega_E$ is called a strongly dependent siphon if $\eta = \sum_{S_i \in \Omega_E} a_i \eta_{S_i}$ where $a_i \geq 0$. $S \notin \Omega_E$ is called a weakly dependent siphon if \exists non-empty $A, B \subseteq \Omega_E$, such that $A \cap B = \emptyset$ and $\eta = \sum_{S_i \in A} a_i \eta_{S_i} - \sum_{S_j \in B} b_j \eta_{S_j}$ where $a_i > 0$ and $b_j > 0$.

In [1], a strongly dependent siphon is also called a strict redundant one. Li and Zhou [1] propose to find elementary siphons by constructing the characteristic P-vector (resp. T-vector) vector matrix $[\lambda]$ (resp. $[\eta]$) of the siphons in N followed by finding linearly independent vectors in $[\lambda]$ (resp. $[\eta]$). The siphons corresponding to these independent vectors are also the elementary siphons in the net system.

Note that Definition 6 and the above calculation of linearly independent vectors do not assume N to be an S^3PR and are applicable to arbitrary nets.

An example is shown in Fig. 1(a): $S_1 = \{p_9, p_{10}, p_3, p_6\}$, $S_2 = \{p_{10}, p_{11}, p_4, p_7\}$, and $S_3 = \{p_9, p_{10}, p_6, p_{11}, p_4\}$. $\eta_1 = [-1 \ 1 \ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \ 0 \ 0 \ 1 \ -1]$ and $\eta_2 = \eta_3 = [0 \ -1 \ 1 \ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \ 0 \ 0 \ 1 \ -1]$. It is easy to see that $\eta_1 + \eta_2 + \eta_3 = [0 \ -1 \ 1 \ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \ 0 \ 0 \ 1 \ -1]$. This shows an example of a weakly dependent siphon. Its controlled model is shown in Fig. 4(b). Table I below lists the four S and their η, where $\eta_4 = \eta_1 + \eta_2 - \eta_3$.

2.3 Control Policy

This subsection explains the idea of the control policy necessary to underlie the theory presented in Section V. A control policy involves three factors: for each monitor place V_S, (1) its input and output arcs; (2) its initial marking; and (3) the siphon it controls. The following two lemmas are helpful to deal with factor (1).

In Fig. 1(b), we add a control place $V_{S_1} = p_{12}$ and the associated arcs for S_1 so that we can consider V_{S_1} as another shared resource since the structure involved is similar. V_{S_1} plus its holder set of places form the support $\{V_{S_1}, p_2, p_7\}$ and $H(V_{S_1})$ of a new P-invariant. Comparing with the support $S_1 \cup \{S_1\}$ of a P-invariant, we define the controller region $[V_{S_1}] = H(V_{S_1})$.

Lemma 1. Let (N, M_0) be an ordinary Petri net (PN) system, S an SMS, Monitor V_S with $M_0(V_S) = M_0(S) - 1$ is added to S such that V_S and $H(V_S)$ form the support of a new minimal P-invariant I_S associated with S, where $\forall p \in I_S$, $I_S(p) = 1$; $\forall p \in P \setminus I_S$, $I_S(p) = 0$, and $M \in R(N, M_0)$. 1) $M([S]) - M(S) = M_0(S)$. 2) $M([V_S]) + M(V_S) = M_0(V_S)$. 3) If S is never empty, then $M([S]) \leq M_0(S) - 1$. 4) $M([V_S]) \leq M_0(V_S)$. **Proof.** 1) $S \cup \{S\}$ is the support of a P-invariant I_S. By the assumption, $\forall p \in I_S$, $I_S(p) = 1$; $\forall p \in P \setminus I_S$, $I_S(p) = 0$. Based on Property 1, $P_2: M = M_0(S) \Rightarrow M([S]) + M(S) = M_0(S)$. 2) $M([V_S]) = M_0(V_S) - M(V_S)$ from 1) S cannot be empty: hence, $M([S]) \geq M_0(S) - 1$. 4) $M([V_S]) \leq M_0(V_S) - M(V_S)$ from 3) $M([S]) \leq M_0(S) - 1$. Since $M([S]) \geq M_0(S) - 1$, $M([S]) = M_0(S)$. □

Lemma 2. Let S be an SMS in a marked $S^3PR(N, M_0)$. Monitor V_S with $M_0(V_S) = M_0(S) - 1$ is added to S such that V_S and $H(V_S)$ form the support of a new P-invariant. If siphon S is never empty, then $\{S\} \subseteq V_S$. **Proof.** Assume $M([S]) \geq M([S]) \Rightarrow M([V_S]) = M_0(V_S) - M([S]) \leq M_0(S) - 1$. It is possible that $M([S]) = I_S$ when $M([S]) = M_{\text{max}}([S])$. Thus, $M_{\text{max}}([S]) = M([S]) - M([V_S]) = M_0(S) - M([S]) = 0$ (empty siphon) — contradiction. □

Based on part 1 of Lemma 1 (or Lemma 1.1), we have

$$M_0(S_1) = M(S_1) + M([S_1])$$

(1)

Equation (1) implies that $M_{\text{max}}([S_1]) = M_0(S_1)$ that happens when $M(S_1) = 0$. To avoid unmarked siphons, we set $M([S_1]) = 1$, implying that $M_{\text{max}}([S_1]) = M_0(S_1) - 1$ or $M_0(S_1) - 1 \geq M([S_1])$.

Based on part 2 of Lemma 1 (or Lemma 1.2) and Lemma 2, we have

$$M_0(V_S) = M(V_S) + M([V_S]) = M(V_S)$$

(2)

or equivalently,

$$M([S]) = M_0(V_S) - M(V_S) - M([V_S]) \geq 0$$

(3)

Note that $M_{\text{max}}([S_1])$ occurs when $M(V_S) = M([V_S]) = 0$; i.e., $M_{\text{max}}([S_1]) = M_0(V_S) = M_0(S_1) - 1$. To disturb
the controller region the least, we should allow $M([S_1])$ to reach its maximum; thus setting $M_0(V_{S1}) = M_0(S_1) - 1$. In general, $M_0(V_{S1}) = M_0(S_1) - \xi_{S1}$, where $\xi_{S1} \geq 1$ is the control depth variable. ξ_{S1} is adjusted to be greater than 1 if some dependent siphons are not controlled. As a result, $M_{\text{max}}([S_1])$ is less than $M_0(S_1) - 1$ and the controller region is more disturbed causing more states lost.

In [9], M_0 for each control place is set to $M_0(p) = M_0(S) - 1$; S is said to be limit controlled since $M_{\text{min}}(S) = 1$ or $\xi_S = 1$.

Definition 5. S is said to reach its limit state when $M(S) = 1$; it is limit-controlled iff it is able to reach its limit state but not able to reach unmarked state; i.e., $\xi_S = 1$ or $M_{\text{min}}(S) = 1$.

Based on Lemma 2, we should set $[V_S] = [S]$ to keep the disturbed region as small as possible. To do so, we have $V_S^* = \cdot [S] \cdot [S]^* \cdot$ and $V_{S5} = [S]^* \cdot [S]$ where $[S] = \cdot x \cdot x \in [S] \cdot$ and $[S]^* = \cdot x \cdot x \in [S]$.

Li and Zhou defined $B_S = [V_S] \cup [S]$ in [8]; they rearranged the output control arcs such that $|B_S| \geq 0$.

Definition 7. Let (N, M_0) be a marked S^3PR. $N = (P \cup P_0 \cup P_R, T, F)$ is a disturbanceless (resp. rearrangement) control model if $\forall V_S, B_S = 0$ (resp. $|B_S| \geq 0$). It is an SMSless control model, if $\forall V_S, V_S \subseteq P_0^*$.

The disturbanceless model disturbs the original or uncontrolled model less than the traditional (called the SMSless approach) one in [1] where the support of the new P-invariant associated with V_S covers $[S] \cup [V_S]$ as a proper subset. Therefore, the disturbanceless model may reach more states. However, it may create new SMS while the traditional one does not. This paper is mainly concerned with the SMSless approach in [1].

III. MOTIVATION

After the failure of two tests, Li & Zhou adjust control depth variables ξ_S of elementary siphons associated with a dependent siphon to satisfy a Marking Linear Inequality (MLI) as follows:

Theorem 1 (Theorem 1 in [1]). Let (N_0, M_0) be a net system and $S_0, S_1, S_2, \ldots,$ and S_n be its SMS. Assume that S_0 is a strict dependent SMS w.r.t. elementary siphons $S_1, S_2, \ldots,$ and S_n where $\eta_0 = \sum_{i=1}^{n} a_i \eta_i$. S_0 is controlled if 1) N_0 is extended by n additional control places $V_{S0}, V_{S1}, V_{S2}, \ldots, V_{Sn}$ such that S_1, S_2, \ldots, S_n are controlled and 2) if $M_0(S_0) > \sum_{i=1}^{n} \{a_i M_0(S_i) - a_i \xi_{S_i}\}$ where ξ_{S_i} is the control depth variable for S_i.

First, they test the above inequality; if it fails, then they perform the following Linear Integer Programming (LIP) test (NP-complete problem):

Theorem 2 (Theorem 5 in [1]). Let (N_0, M_0) be a marked S^3PR and S_1, S_2, \ldots, S_n be the elementary siphons of N_0. By the method stated in Definition 8 in [1], add control places to make elementary siphons controlled. The extended net system is denoted by (N_1, M_1). Let $\theta = \{L_i | i = 1, 2, \ldots, m\}$ be the set of minimal P-invariants of N_1 and S be an SMS of N_0. S can never be emptied if $M_0(S) > \max(\sum_{p \in [S]} M(p)|M \in R(N_1 M_0))$ where $\max(\sum_{p \in [S]} M(p))$ is obtained by linear integer programming (LIP)

$$
\max \{ \sum_{p \in [S]} M(p) \}
$$

subject to

$$
I_1^T \cdot M = I_1^T \cdot M_0
$$

$$
I_2^T \cdot M = I_2^T \cdot M_0
$$

$$
\ldots
$$

$$
I_m^T \cdot M = I_m^T \cdot M_0
$$

In [5], Li & Zhou further improve the test in Theorem 1 by establishing more general conditions under which a dependent siphon can be always marked. It is based on a linear programming problem (LPP), where the marking of a place can hold real (instead of integer) numbers, thus avoiding the NP-complete problem. However the improved condition is only sufficient, but not necessary. That is, even if the condition fails, the dependent siphon may remain unmarked. To
decide whether to adjust control depth variables, the LIP in Theorem 2 may still need to be performed.

We will develop a better (sufficient and necessary) test than that in Theorem 1 so that one adjusts control depth variables if and only if the new test fails. This avoids the time-consuming integer programming test completely whether the new test fails or not.

Definition 8. Let \(A \) be a set of operation places, \(R(A) = \{ p \mid p \in A, p \in R(r) \} \), where \(R(r) \) denotes the set of holders of \(r \) (operation places that use \(r \)). Let \(B \) be a set of resource places, \(M(B) = \sum_{r \in B} M(r) \). Let \(I^V \) (resp. \(S \)) be the minimal \(P \)-invariant associated with control place \(V \) (resp. siphon \(S \)). \(|V| = |I^V| \cup |V| \) and complementary siphon \([S] = |I^S| \setminus |S| \).

In Fig. 1(a), \([S_1] = \{ p_2, p_7 \} \), \([S_2] = \{ p_3, p_8 \} \), \([S_3] = \{ p_2, p_3, p_7, p_8 \} \), \([V_{S_1}] = \{ p_2, p_7, p_8 \} \), \([V_{S_2}] = \{ p_2, p_3, p_8 \} \), and the MLI: \(M_0(S_3) \geq M_0(S_1) - \xi_{S_1} + M_0(S_2) - \xi_{S_2} = (a+b)-1 \). Let \(M_0(p_9) = a, M_0(p_{10}) = b, \) and \(M_0(p_{11}) = c \). We say \(S_i \) (\(i = 1, 2 \)) reaches its limit state when \(M(S_i) = 1 \); it is limit-controlled if it is able to reach its limit state but not able to reach empty status. Note that when \([V_{S_1}] = [S_1] \), \(S_i \) is limit-controlled if \(\xi_{S_i} = 1 \).

Note that output control arcs from monitors \(p_{12} \) and \(p_{13} \) end at source transitions \([t_1] \) and \(t_8 \), respectively (in Fig. 1(a)) of the processes, rather than sink transitions \([t_2] \) and \([t_7] \), respectively (in Fig. 1(b)) of siphons \(S_1 \) and \(S_2 \), respectively. This is to avoid new SMS generation [i.e., \(S_i = [p_1, p_{12}, p_{13}, p_7] \) in Fig. 1(b)] that may lead to deadlocks [i.e., when \(b = 1 \) in Fig. 1(b)] if no monitor is added.

Consider the case: \(b = M_0(r_2) = 2 \). Note that \(M_0(V_{S_1}) = a + b - 1 \), \(M_0(V_{S_2}) = b + c - 1 \), and \(M_0(S_3) = a + b + c = M_0(S_1) - \xi_{S_1} + M_0(S_2) - \xi_{S_2} = (a + b) - 1 \). Thus, \(b = c + a + 2 \). This discrepancy arises from the fact that the MLI in Theorem 1 assumes that \([V_{S_1}] = [S_1] \), while in \([V_{S_1}] \supsetneq [S_1] \) (\(i = 1, 2 \)).

To understand this, a theoretical analysis is performed below. Set \(b = b_1 + b_2 \) where \(b_1 = M(p_3) \) and \(b_2 = M(p_7) \). First we explore the condition under which \(S_1 \) is emptied. In order to empty \(S_1 \), all tokens in \(p_9 \) and \(p_{11} \) must go to \(p_2 \) and \(p_8 \), respectively, and all tokens in \(p_{10} \) must distribute to \(p_3 \) and \(p_7 \). Thus,

\[
M(p_2) = a, \quad M(p_8) = c, \quad M(V_{S_1}) = M(V_{S_2}) = 0, \quad M_0(V_{S_1}) = c + b_2 + a = b - \xi_{S_1} \implies b_2 = b - \xi_{S_1} - c
\]

\[
M_0(V_{S_2}) = c + b_1 + a = b - \xi_{S_2} - a \implies b_2 = a + \xi_{S_2}
\]

Adding the two equations, we have \(M_0(r_2) = b = c + a + \xi_{S_1} + \xi_{S_2} \geq c + a + 2 \) since \(\xi_{S_1} \geq 1 \) and \(\xi_{S_2} \geq 1 \). \(b = c + a + 2 \) is the condition to empty \(S_3 \) when \(\xi_{S_1} = \xi_{S_2} = 1 \), and the condition for \(S_3 \) to be marked (or controlled) is

\[
b < c + a + 2.
\]

Note that to empty \(S_3 \), \(b = c + a + 2 \), \(b_1 = c + 1 \) and \(b_2 = a + 1 \) when \([V_{S_1}] \supsetneq [S_1] \) (\(i = 1, 2 \)), versus \(b = 2 \), \(b_1 = 1 \) and \(b_2 = 1 \) when \([V_{S_1}] = [S_1] \) (\(i = 1, 2 \)).

Physically, \([V_{S_1}] \), \(i = 1, 2 \), covers more places than \([S_1] \) due to the movement of output nodes of control arcs to output, called source, transitions of idle places. As a result, when all tokens in \([V_{S_1}] \) (\(i = 1, 2 \)) are used to trap tokens, some of \([V_{S_1}] \) are in \([V_{S_1}] \supsetneq [S_1] \) (\(i = 1, 2 \)) and fewer tokens are in \([S_3] \) than the case when \([V_{S_1}] = [S_1] \).

This reduces the number of tokens in \(V_{S_i} \) to trap the tokens in \(S_3 \). To compensate for this, we decrease \(M_0(V_{S_i}) \) via increasing \(b \) by \(\Delta b_i \) (called compensation factor); \(\Delta b = \Delta b_1 + \Delta b_2 = \Delta V_{S_1} + \Delta V_{S_2} = c + a \). Thus \(b \) is increased to \(c + a + 2 \) from (2) to empty \(S_3 \). And neither \(S_1 \) nor \(S_2 \) can be limited-controlled since \(M(S_1) \geq M(p_3) = b_1 = c + 1 - 1 \) and \(M(S_2) \geq M(p_7) = b_2 = a + 1 \). Thus, it seems that the MLI cannot now be modified to \(M_0(S_i) > (M_0(S_1) - (\xi_{S_1} + c) + (M_0(S_2) - (\xi_{S_2} + c)) \).

To extend to more general cases, we should consider \(M_0(R([V_{S_1}] \cap [S_1])) \) rather than \(M_0(R([V_{S_1}] \setminus [S_1])) \). This is because in order to empty \(S_3 \), tokens in \(V_{S_1} \) may not need to be trapped in \([V_{S_1}] \setminus [S_3] \). For instance, in Fig. 2, set \(M_0(p_7) = a, M_0(p_8) = b, M_0(p_9) = c, M_0(p_{10}) = d, \) and \(M_0(p_{11}) = e \). \(S_1 = \{ p_7, p_8, p_3, p_2 \}, S_2 = \{ p_8, p_9, p_4, p_3' \}, S_3 = \{ p_7, p_8, p_9, p_4, p_3' \}, [S_1] = \{ p_2, p_3' \}, [S_2] = \{ p_3, p_4' \}, [S_3] = \{ p_2, p_3, p_4, p_3', p_4' \}, \) \(V_{S_1} = \{ p_2, p_3', p_4', p_5', p_6' \}, V_{S_2} = \{ p_2, p_3, p_4, p_5', p_6' \} \).

\[
M_0(R([V_{S_1}] \cap [S_3]) \setminus [S_1])) = M_0(R([p_4'])) = M_0(p_9) = c \quad \text{and} \quad M_0(R([V_{S_2} \cap \{ V_{S_1} \} \setminus [S_2])) = M_0(R(p_2')) = M_0(p_7) = a.
\]

Thus, it remains that \(b = c + a + 2 \) rather than \(b = c + a + d + e + 2 \). This is because when \(S_3 \) is empty, the markings of \(p_{10} \) and \(p_{11} \) may remain at their initial ones.
Another example is shown in Fig. 3. Set $M_0(p_7)=a$, $M_0(p_9)=b$, $M_0(p_{11})=c$, $M_0(p_8)=d$, $M_0(p_{10})=f$, $M_0(p_{12})=e$, and $M_0(p_{13})=g$. $S_1 = \{p_7, p_8, p_9, p_{12}, p_4, p_5, p'_5\}$, $[S_1] = \{p_2, p_3, p_4, p'_4\}$; $S_2 = \{p_9, p_{10}, p_{11}, p_{13}, p_6, p'_6\}$, $\{S_2\} = \{p_4, p_5, p'_5, p'_6\}$; $S_3 = \{p_7, p_8, p_9, p_{10}, p_{12}, p_{13}, p_6, p'_5\}$, $[S_3] = \{p_2, p_3, p_4, p_5, p'_3, p'_4, p_5, p'_6\}$. S_1 and S_2 (resp. S_3) are elementary (resp. dependent) siphons and $\eta_3=\eta_1+\eta_2$. $[V_{S_1}]=\{p_2, p_3, p'_3, p_4, p'_4, p'_6\}$, $[V_{S_2}]=\{p_2, p_3, p_4, p_5, p'_5, p'_6\}$, $M_0(R([V_{S_1}][[S_3]][S_1]))=M_0(R((p_5', p'_6)))=M_0(p_11)+M_0(p_{13})=c+g$ and $M_0(R([V_{S_2}][[S_3]][S_2]))=M_0(R((p_2, p_3)))=M_0(p_7)+M_0(p_8)=a+d$. Thus, $b=c+a+d+g+2$ rather than $b=c+a+2$. Note that, unlike that in Fig. 2, each of S_1 and S_2 contains a resource place (p_8 and p_{10}, respectively) that is not shared, but used by a single WP.

In summary, we have the following:

Observation 1. Let (N_0, M_0) be a marked S^3PR and S_1 a dependent siphon w.r.t. elementary siphons S_1 and S_2 such that $\eta_3=\eta_1+\eta_2$. By Definition 8 in [1], add 2 control places such that S_1 and S_2 are controlled with control depth variables ξ_{S_1} and ξ_{S_2}, respectively. S_3 can never be emptied if $M_0(S_3)>\{M_0(S_1)+\mu_{S_1}+\xi_{S_1}(S_3)\}$.

$$\mu_{S_1} = M_0(R(([V_{S_1}]\cap[S_3]\setminus[S_1])))$$

$$\mu_{S_2} = M_0(R(([V_{S_2}]\cap[S_3]\setminus[S_2])))$$

and $M_0(S_i)-\mu_{S_i} \geq \xi_{S_i} \geq 1$, \(i = 1, 2\).
IV. THEORY

We first propose the basic theory below to decide whether a siphon is dependent.

Definition 9. An n-dependent siphon is a dependent siphon depending on n elementary siphons.

To further explore the controllability for an n-dependent siphon, n>2, specific cases of n = 3 and n = 4 will be presented. From which, a general theorem is proposed to conclude that any n-dependent siphon, n>2 is already controlled and needs no monitor if every elementary siphon is limit-controlled.

Theorem 3. Let \((N_0, M_0)\) be a net system and \(S_0\) be a dependent SMS w.r.t. elementary siphons \(S_1, S_2, \ldots, S_n, S_{n+1}, S_{n+2}, \ldots\), and \(S_{n+m}\) where

\[
\eta_{S_0} = \sum_{i=1}^{n} (a_i \eta_{S_i}) - \sum_{j=1}^{m} (b_{n+j} \eta_{S_{n+j}})
\]

Then

1. \(\forall S \in \{S_0, S_1, S_2, \ldots, S_{n+1}, S_{n+2}, \ldots, S_{n+m}\}\),
 \[
 \eta_S = -\eta[S] \quad \text{(characteristic T -vector of the complementary set of siphon S equals the negative of that of S)}.
 \]

2. \(\lambda_{S_0} = a_1 \lambda_{[S_1]} + a_2 \lambda_{[S_2]} + \cdots + a_n \lambda_{[S_n]} - b_{n+1} \lambda_{[S_{n+1}]} - b_{n+2} \lambda_{[S_{n+2}]} - \cdots - b_{n+m} \lambda_{[S_{n+m}]}\),
 where \(a_i, b_j \in R\) (set of real numbers), \(i \in \{1, 2, \ldots, n\}\) and \(j \in \{1, 2, \ldots, m\}\) (characteristic P-vectors of the complementary sets of siphon \(S_0, S_1, S_2, \ldots, S_n, S_{n+1}, S_{n+2}, \ldots, S_{n+m}\) follow the same equation as that of the corresponding characteristic T-vectors).

3. \(M([S_0]) = a_1 M([S_1]) + a_2 M([S_2]) + \cdots + a_n M([S_n]) - b_{n+1} M([S_{n+1}]) - b_{n+2} M([S_{n+2}]) - \cdots - b_{n+m} M([S_{n+m}]), M \in R(N, M_0)\)
 (total tokens in the complementary sets of siphon \(S_0, S_1, S_2, \ldots, S_n, S_{n+1}, S_{n+2}, \ldots, S_{n+m}\) follow the same equation as that of the corresponding characteristic T-vectors).

4. Note that \(S_R = S \cap P_R\). \(\forall p \in S \cup [S], I(p) = 1;\) otherwise, \(I(p) = 0\). Thus,
 \[
 I = \lambda_{S}^T [N] = \lambda_{S}^T [N] + I^T [N] = 0
 \]
 (By the definition of P-invariant)
 \[
 \Rightarrow \eta_S = -\eta[S].
 \]

2. Based on equations \(\eta_{S_0} = \sum_{i=1}^{n} (a_i \eta_{S_i}) - \sum_{j=1}^{m} (b_{n+j} \eta_{S_{n+j}})\), the fact that \(\eta_S = -\eta[S]\) and \(\eta_T^T\), we have
 \[
 \eta_{[S_0]} = a_1 \eta_{[S_1]} + a_2 \eta_{[S_2]} + \cdots + a_n \eta_{[S_n]}
 \]
 \[
 -b_{n+1} \eta_{[S_{n+1}]} - b_{n+2} \eta_{[S_{n+2}]} - \cdots - b_{n+m} \eta_{[S_{n+m}]}\]
 \[
 \Rightarrow \lambda_{[S_0]} - a_1 \lambda_{[S_1]} - a_2 \lambda_{[S_2]} - \cdots - a_n \lambda_{[S_n]}
 \]
 \[
 + b_{n+1} \lambda_{[S_{n+1}]} + b_{n+2} \lambda_{[S_{n+2}]} + \cdots + b_{n+m} \lambda_{[S_{n+m}]}\]
 \[
 \Rightarrow \lambda_{[S_0]} - a_1 \lambda_{[S_1]} - a_2 \lambda_{[S_2]} - \cdots - a_n \lambda_{[S_n]}
 \]
 \[
 + b_{n+1} \lambda_{[S_{n+1}]} + b_{n+2} \lambda_{[S_{n+2}]} + \cdots + b_{n+m} \lambda_{[S_{n+m}]}\]
 \[
 \Rightarrow (\lambda_{[S_0]} - a_1 \lambda_{[S_1]} - a_2 \lambda_{[S_2]} - \cdots - a_n \lambda_{[S_n]}
 \]
 \[
 + b_{n+1} \lambda_{[S_{n+1}]} + b_{n+2} \lambda_{[S_{n+2}]} + \cdots + b_{n+m} \lambda_{[S_{n+m}]}\]
 \[
 \Rightarrow \lambda_{[S_0]} = \lambda_{[S_1]} - a_2 \lambda_{[S_2]} - \cdots - a_n \lambda_{[S_n]}
 \]
 \[
 + b_{n+1} \lambda_{[S_{n+1}]} + b_{n+2} \lambda_{[S_{n+2}]} + \cdots + b_{n+m} \lambda_{[S_{n+m}]}\]
 \[
 \Rightarrow \lambda_{[S_0]} = \lambda_{[S_1]} - a_2 \lambda_{[S_2]} - \cdots - a_n \lambda_{[S_n]}
 \]
 \[
 + b_{n+1} \lambda_{[S_{n+1}]} + b_{n+2} \lambda_{[S_{n+2}]} + \cdots + b_{n+m} \lambda_{[S_{n+m}]}\]

3. Multiplying both sides of the equation in (2) by \(M^T\), we have
 \[
 \lambda_{[S_0]} M^T
 \]
 \[
 = a_1 \lambda_{[S_1]} M^T + a_2 \lambda_{[S_2]} M^T + \cdots + a_n \lambda_{[S_n]} M^T
 \]
 \[
 - b_{n+1} \lambda_{[S_{n+1}]} M^T - b_{n+2} \lambda_{[S_{n+2}]} M^T - \cdots
 \]
 \[
 - b_{n+m} \lambda_{[S_{n+m}]} M^T
 \]
 \[
 \Rightarrow M([S_0]) = a_1 M([S_1]) + a_2 M([S_2]) + \cdots
 \]

© 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
two elementary circuits is at most a resource place compound circuit where the intersection between any and any strongly dependent siphon corresponds to a synthesized from a strongly connected resource subnet test, we need to find the exact to avoid the subsequent linear integer programming

Lemma 3. Let $S_0 = S_1 \circ S_2 \circ \ldots \circ S_n$ (denoting that S_0 strongly depends on $S_1, S_2, \ldots, \text{and } S_n$). In order to compute the exact MLI to avoid the subsequent linear integer programming test, we need to find the exact $M_{max}(S_0)$.

(1) $M([S_0]) = M([S_1]) + M([S_2]) + \ldots + M([S_n])$.

(2) $[S_0] \subseteq [V_{S_1}] \cup [V_{S_2}] \cup \ldots \cup [V_{S_n}]$

(3) If $M_{max}([S_0])$ occurs, then $\forall S_i, M([V_{S_i}] \setminus [S_0]) = 0$; i.e., there are no tokens in places outside $S_0 \cup [S_0]$

Proof.

(1) It follows from Theorem 3.3 and that all $a_i = 1$.
(2) From [1] or Property 3, we have

$$[S_0] = [S_1] \cup [S_2] \cup \ldots \cup [S_n],$$

since each place p appears in $[S_0]$ only once, there is only one $[S_j]$ among all $[S_j]$ that contains p. This equation together with the fact that $[S_i] \subseteq [V_{S_i}]$ [Otherwise, it may be that $M([S_i] \setminus [V_{S_i}]) = M_0(S_i)$ and S_i is empty] lead to

$$[S_0] \subseteq [V_{S_1}] \cup [V_{S_2}] \cup \ldots \cup [V_{S_n}]$$

(3) $M([V_{S_1}] \cup [V_{S_2}] \cup \ldots \cup [V_{S_n}])$ $\Rightarrow M([S_0])$ $\Rightarrow M([V_{S_1}] \cup [V_{S_2}] \cup \ldots \cup [V_{S_n}])$

Thus, in order to reach $M_{max}([S_0])$, it must be that $\forall S_i, M([V_{S_i}] \setminus [S_0]) = 0$.

Theorem 4. Let $S_0 = S_1 \circ S_2 \circ \ldots \circ S_n$ such that $\eta_o = \sum_{i=1}^n (a_i \eta_i)$. Then

(1) $M_{max}([S_0]) = \sum_{i=1}^n (M_0(V_{S_i}) - \mu_{S_i}) = \sum_{i=1}^n M_0(V_{S_i}) - \sum_{i=1}^n \mu_{S_i}$ (maximum tokens of $[S_0]$ equals the sum of initial marking of each S_i minus the sum of compensation factors and control depth variables). For all $i, M_0(V_{S_i}) - \mu_{S_i}$ should be greater than zero.
(2) S_0 can never be emptied iff

$$M_0(S_0) > \sum_{i=1}^n (M_0(S_i) - (\xi_{S_i} + \mu_{S_i}))$$

$$= \sum_{i=1}^n (M_0(S_i) - \xi_{S_i}) - \sum_{i=1}^n \mu_{S_i}$$

Fig. 4. (a) Example weakly dependent siphon [2] and (b) Controlled model of that in Fig. 4(a).
(initial marking of \(S_0 \) is reduced by the sum of compensation factors to make \(S_0 \) controlled). \(\text{(6)} \)

Proof. (1) Since \([V_{S_i}] \supseteq [S_i]\), the controller region \([V_{S_i}]\) can be separated into two: \([S_i]\) and \(([V_{S_i}]\setminus [S_i])\). The latter can be further divided into \([V_{S_i}]\setminus [S_0]\) and \(([V_{S_i}]\cap [S_0]\setminus [S_i]; \text{i.e.,}\)

\[[V_{S_i}] = ([V_{S_i}]\setminus [S_0]) \cup \(([V_{S_i}]\cap [S_0]\setminus [S_i]) \cup [S_i]. \]

Similarly, the marking of the controller region \([V_{S_i}]\) is the sum of that of the above three subregions:

\[M([V_{S_i}]) = M([V_{S_i}]\setminus [S_0]) + M(([V_{S_i}]\cap [S_0]\setminus [S_i]) + M([S_i]). \]

Rearranging the terms, we have

\[M([S_i]) = M([V_{S_i}]\setminus [S_0]) - M(([V_{S_i}]\cap [S_0]\setminus [S_i]) \]

\[M_{\text{max}}([S_i]) \text{ occurs when } M([V_{S_i}]\setminus [S_0]) = M_{\text{min}}([V_{S_i}]\setminus [S_0]) = 0 \text{ and } M([V_{S_i}]\setminus [S_0]) = M([S_i] = M_0([V_{S_i}]). \]

Thus,

\[M_{\text{max}}([S_i]) = M_0([V_{S_i}]) - \mu_{S_i}, \]

where we have set \(\mu_{S_i} = M([V_{S_i}]\setminus [S_0]) \setminus [S_i] \) so that the compensation effect occurs the most when \(M([V_{S_i}]\setminus [S_0]) = M_0([V_{S_i}]) \) and \(M(R(S_0)) = 0. \)

Substituting the above \(M([S_i]) \) into \((5) \), we have

\[M_{\text{max}}([S_0]) = \sum_{i=1}^{n} (M_0([V_{S_i}]) - \mu_{S_i}) = \sum_{i=1}^{n} (M_0([S_0] - (\xi_{S_i} + \mu_{S_i})), \]

\(\text{(8)} \)

We are now ready to prove 2);

\((\rightarrow) \) When \((8) \) holds, \(M([S_0]) < M_0([S_0]) \), which implies \(M(S_0) \geq 1 \) and \(S_0 \) can never be emptied. \((\rightarrow) \) Assume contrarily that \(M_0([S_0]) \leq \sum_{i=1}^{n} a_i([S_0] - (\xi_{S_i} + \mu_{S_i}) \). Then by \((8) \), \(M_{\text{max}}([S_0]) \geq M_0([S_0]) \) and \(S_0 \) is emptied — contradiction.

This theorem clearly shows that \(S_0 \) is easier to be controlled in a Type I \(n \)-dependent siphon than a Type II one by an amount of \(\sum_{i=1}^{n} \mu_{S_i} \). Note that \(n = 2 \) in Observation 1 is a degenerate case of that in the above theorem.

In the sequel, we will deal with special cases of \(S_0 \) being a 3-, and a 4-dependent siphon, respectively. We will infer a general formula and show that \(S_0 \) is always controlled and needs no monitor for \(n \geq 2 \). For 2-dependent siphon case, we will verify the result in \((4) \) and thus prove it theoretically.

In Fig. 2, let \(S_1 = \{p_7, p_8, p_3, p_2\}, S_2 = \{p_8, p_9, p_4, p_3\} \), and \(S_3 = \{p_9, p_{10}, p_5, p_4\} \). For \(S_0 = S_1 \cup S_2 \cup S_3 \), we apply the same method as the examples in Section III (i.e., setting \(b = b_1 + b_2 \), where \(b_1 = M(p_3) \) and \(b_2 = M(p_3) \) and \(c = c_1 + c_2 \), where \(c_1 = M(p_4), c_2 = M(p_4) \). To empty \(S_0 \), all tokens in \(p_7 \) and \(p_{10} \) must go to \(p_2 \) and \(p_3 \) respectively, all tokens in \(p_8 \) must distribute to \(p_3 \) and \(p_4 \), and all tokens in \(p_9 \) must distribute to \(p_4 \) and \(p_4 \). Thus,

\[\mu_{S_1} = d + c = M(p_3) + M(p_4), \]

\[\mu_{S_2} = d + a = M(p_3) + M(p_2), \]

\[\mu_{S_3} = a + b_1 = M(p_2) + M(p_3). \]

Summing the above three equations, we have

\[\mu_{S_1} + \mu_{S_2} + \mu_{S_3} = (a + d + b_1 + c_2) + (d + a) \]

\[= M_0(V_{S_2}) + (a + d) \]

where \(\mu_{S_i} = M([V_{S_i}]\setminus [S_0]) \setminus [S_i], M(p_2) = a, \) and \(M(p_4) = d. \)

Similarly, for \(S_0 = S_1 \cup S_2 \cup S_3 \cup S_4 \) (\(S_1 \setminus S_3 \) are defined above and \(S_4 = \{p_{10}, p_{11}, p_6, p_3\} \))

\[\mu_{S_1} = e + c + d_2, \]

\[\mu_{S_2} = a + e + d_2, \]

\[\mu_{S_3} = a + c + e + b_1, \]

\[\mu_{S_4} = a + b_1 + c + e. \]

Summing the above four equations, we have

\[\mu_{S_1} + \mu_{S_2} + \mu_{S_3} + \mu_{S_4} = (a + b_1 + c_2 + d_2 + e) + (a + b_1 + c_1 + d_2 + e) + (a + c_2 + d_2 + e) + (a + d_1 + e) \]

\[= M_0(V_{S_2}) + M_0(V_{S_3}) + (a + d) \]

where \(\mu_{S_i} = M([V_{S_i}]\setminus [S_0]) \setminus [S_i], M(p_2) = a, M(p_3) = b_1, M(p_4) = b_2, M(p_4) = c_1, M(p_4) = c_2, M(p_5) = d_1, M(p_5) = d_2, \) and \(M(p_6) = e. \)

In general, for \(S_0 = S_1 \cup S_2 \cup S_3 \cup S_4 \), we have, as will be proved in Theorem 5,

\[\mu_{S_1} + \mu_{S_2} + \cdots + \mu_{S_n} = M_0(V_{S_2}) + M_0(V_{S_3}) + M_0(V_{S_4}) + \cdots + M_0(V_{S_{n-1}}) + (M_0(r_1) + M_0(r_{n+1})) \]

\(\text{(9)} \)
Substituting (9) into (6),
\[M_0(S_0) > \sum_{i=1}^{n} (M_0(S_i) - \xi_{Si}) - \sum_{i=1}^{n} \mu_{Si} \]
\[= \sum_{i=1}^{n} (M_0(S_i) - \xi_{Si}) - (M_0(V_{S2}) + M_0(V_{S3}) + \ldots + M_0(V_{Sn-1}) + (M_0(r_1) + M_0(r_{n+1})) \]
\[= \sum_{i=1}^{n} (M_0(S_i) - \xi_{Si}) - \sum_{i=2}^{n-1} (M_0(S_i) - \xi_{Si}) \]
\[+ M_0(r_1) + M_0(r_{n+1}) \]
\[= (M_0(S_1) - \xi_{S1}) + (M_0(S_n) - \xi_{Sn}) \]
\[- (M_0(r_1) + M_0(r_{n+1})) \]
where we have set \(M_0(V_{Si}) = M_0(S_i) - \xi_{Si} \).
Rearranging the terms, we have
\[M_0(S_0) + (M_0(r_1) + M_0(r_{n+1})) + (\xi_{S1} + \xi_{Sn}) \]
\[> M_0(S_1) + M_0(S_n) \] (10)

For \(n = 2 \) and \(\xi_{S1} = \xi_{Sn} = 1 \), (10) becomes
\[M_0(S_0) + (M_0(r_1) + M_0(r_{n+1})) + (1 + 1) \]
\[> M_0(S_1) + M_0(S_2). \]

Now making use of the fact that \(M_0(S_0) = a + b + c \),
\(M_0(r_1) = a, M_0(r_{n+1}) = c, \xi_{S1} = \xi_{Sn} = 1 \),
\(M_0(S_1) = a + b, M_0(S_2) = b + c \), we have
\[a + b + c + a + c + 2 > a + b + b + c. \]

After algebraic simplification, we have \(c + a + 2 > b, \)
which is the same as (3).

When \(n > 2 \), \(M_0(S_0) \geq M_0(S_1) + M_0(S_n) \), and the above inequality holds since \((M_0(r_1) + M_0(r_{n+1})) + (\xi_{S1} + \xi_{Sn}) > 0 \). Thus, an \(n \)-dependent siphon \(S_0 \) is controlled if \(n > 2 \) and needs no monitor.

Note that in the above, we have only \(N_1 \) and \(N_2 \) so that \(b = b_1 + b_2 \). Similarly, \([V_{Si}] = ([V_{Si}] \cap P_1) \cup ([V_{Si}] \cap P_2)\); i.e., each of \([V_{Si}] \) and \(\mu_{Si} \) and can be divided into two terms: one in the \(N_1 \) side and another in the \(N_2 \) side; i.e., \([V_{Si}] = [V_{Si}]^1 + [V_{Si}]^2 \) and \mu_{Si} = \mu_{Si}^1 + \mu_{Si}^2. \) In general, we have \(N_1, N_2, \ldots, N_i_q \) and \(N_i_k, \ldots, N_k_v \) so that \(b = b_{i1} + b_{i2} + \ldots + b_{i_q} + b_{k1} + b_{k2} + \ldots + b_{k_v}. \) In the sequel, we derive (9) by assuming that resources are shared between \(N_1 \) and \(N_2 \) and all siphons are Type I to simplify the presentation. The above generalization case can be proved in a similar manner.

Theorem 5. Let \(S_0 = S_1 \circ S_2 \circ \ldots \circ S_n \) such that \(\eta_i = \sum_{j=1}^{n} \eta_j \). Then \(\mu_{S1} + \mu_{S2} + \ldots + \mu_{Sn} = M_0(V_{S2}) + M_0(V_{S3}) + \ldots + M_0(V_{Sn}) + (M_0(r_1) + M_0(r_{n+1})). \)

Proof. Define \([S_j]^1 = [S_j] \cap P_1 \) (places of \([S_j] \) in \(P_1 \)),
\(M^1(S_j) = M([S_j] \cap P_1) \) (tokens in both \(S_j \) and \(P_1 \)), and \(\mu_{S_j}^1 = M([-([V_{Sj}] \cap P_1) \cap [S_j]) \setminus [S_j]) \) (portion of \(\mu_{S_j} \) that are in \(N_j \)), where \(P_1 \) is the set of places in \(N_j \) defined in Definition 4.

In order to empty \(S_0 \), all tokens in \(r_1 \) (resp. \(r_{n+1} \)) must distribute in \([S_1]^1 \) (resp. \([S_n]^1 \)) so that
\[M_0(r_1) = M^2([S_1]) \] (resp. \(M_0(r_{n+1}) = M^1([S_n]) \)).

We first compute \(\mu_{S_j}^1, j = 1, 2, \ldots, n-1, \)
\[\mu_{S1}^1 = M^1([S_2]) + M^1([S_3]) + \ldots + M^1([S_{n-1}]) \]
\[+ M^1([S_n]) \]
\[\mu_{S2}^1 = M^1([S_3]) + M^1([S_4]) + \ldots + M^1([S_n]) \]
\[\mu_{S3}^1 = M^1([S_4]) + \ldots + M^1([S_n]) \]
\[\ldots \]
\[\mu_{Sn-1}^1 = M^1([S_n]). \]
\[\mu_{Sn}^1 = 0 \]

Summing the above terms, we have
\[\sum_{j=1}^{n} \mu_{S_j}^1 = M^1([S_1]) + 2M^1([S_2]) + \ldots + (n-2) \]
\[\times M^1([S_{n-1}]) + (n-1)M^1([S_n]). \] (11)

Similarly, for the \(N_2 \) side, we have
\[\sum_{j=1}^{n} \mu_{S_j}^2 = M^2([S_{n-1}]) + 2M^2([S_{n-2}]) + \ldots + (n-2) \]
\[\times M^2([S_2]) + (n-1)M^2([S_1]). \] (12)

Summing the terms in Eqs. (11) & (12), we have, after rearranging the terms,
\[\left(\sum_{j=1}^{n} \mu_{S_j}^1 + \sum_{j=1}^{n} \mu_{S_j}^2 \right) \]
\[= [M^2([S_1]) + M^2([S_2]) + M^1([S_3]) + \ldots + M^1([S_n]) \]
\[+ M^1([S_4]) + \ldots + M^1([S_n]) + [M^2([S_1]) \]
\[+ M^2([S_2]) + M^1([S_3]) + M^1([S_4]) + \ldots + M^1([S_n]) \]
\[+ \ldots + M^1([S_n])] + \ldots + [M^2([S_1]) + M^2([S_2]) \]
\[+ \cdots + M^2((S_{n-3})) + M^2((S_{n-2})) + M^2((S_{n-1})) + M^2((S_n)) \]
\[+ M^4((S_{n-1})) + M^4((S_n)) + M^2((S_1)) \]
\[+ M^4((S_1)) \]
\[= M((V_{S2})) + M((V_{S3})) + \cdots + M((V_{S_{n-1}})) \]
\[+ M_0(r_1) + M_0(r_{n+1}) = M_0(V_{S2}) + M_0(V_{S3}) \]
\[+ \cdots + M_0(V_{S_{n-1}}) + M_0(r_1) + M_0(r_{n+1}). \]

where
\[M((V_{S2})) = M_0(V_{S2}) = M^2((S_1)) + M^2((S_2)) \]
\[+ M^4((S_2)) + M^4((S_3)) + M^4((S_4)) \]
\[+ \cdots + M^4((S_n)). \]
\[M((V_{S3})) = M_0(V_{S3}) = M^2((S_1)) + M^2((S_2)) \]
\[+ M^2((S_3)) + M^4((S_3)) + M^4((S_4)) \]
\[+ \cdots + M^4((S_n)). \]
\[\ldots \]
\[M((V_{S_{n-1}})) = M_0(V_{S_{n-1}}) = M^2((S_1)) + M^2((S_2)) \]
\[+ \cdots + M^2((S_{n-3})) + M^2((S_{n-2})) \]
\[+ M^4((S_{n-1})) + M^2((S_{n-1})) + M^4((S_n)). \]
\[M_0(r_1) = M^2((S_1)), \quad \text{and} \quad M_0(r_{n+1}) = M^4((S_n)). \]

This proves (9). \[\square \]

The reader may refer to the sentences from the second paragraph behind the proof of Theorem 4 for the specific cases of 3- and 4-dependent siphons to understand the above proof.

This theorem expresses the sum of compensation factors in terms of known quantities (initial markings). Note that this theorem holds only if \(a_1 = a_2 = \ldots = a_n, \) or when the dependent siphon is a compound one.

Remarks. Note that (1) Theorem 5, like Theorem 4 for \(n \)-dependent siphons \(n > 2 \), holds only when all \(a_i = 1 \) and all \(b_j = 1 \). When \(\mu_2 = \emptyset, i \in [1, 2, \ldots, n] \) and \(S_0 = S_1 \circ S_2 \circ \ldots \circ S_n \), there is no need for the time-consuming integer programming test after we perform the MLI test by adjusting control depth variables in an \(S^3PR \). However, if some \(\mu_{S_i} \neq 0 \) for \(n > 2 \), then the dependent siphon is already controlled.

Total Time Complexity. Case (1): Only Type I siphons exist. The worst total time complexity is \(O(n^2) \) since only 2-dependent siphon needs to check the new MLI based on Theorem 4.2 and there are at worst \(O(n^2) \) 2-dependent siphons, where \(n \) is the total number of resource places in the net (recall that each SMS in an \(S^3PR \) must contain at least two resource places). In practice, Type I strongly 2-dependent occurs between adjacent resource places shared between two processes and there are linear number of 2-dependent siphons as shown in [10]. As a result, the total time complexity to check controllability of all strongly dependent siphons is reduced from exponential to linear. Case (2): Only Type II siphons exist. The time complexity to verify the MLI of a dependent siphon is \(O(|\Pi_E|) \) since there are \(O(|\Pi_E|) \) terms on the right hand side of the MLI (see the inequality in Theorem (1)). They are \(|\Pi_D| \) dependent siphons. As a result, the total time complexity is \(O(|\Pi_E||\Pi_D|) \), where \(|\Pi_E| \) is total number of elementary siphons and \(|\Pi_D| \) total number of dependent siphons.

V. \(S^3PR \) EXAMPLE

This section compares the proposed approach with the LIP one in [1] based on the well-known \(S^3PR \) example. The layout [5] of the flexible manufacturing cell is shown in Fig. 3 in [1] and the Petri net model of the system is shown in Fig. 5.

The net system is an \(S^3PR \) and contains deadlocks. There are six corresponding elementary or basic siphons synthesized from six resource circuits using the handle-construction procedure and 12 strongly dependent siphons as shown in Tables I and II in [8] respectively. For example, \(S_3 \) is a dependent SMS w.r.t. to \(S_4 \) and \(S_{18} \). To apply the elementary-siphon approach to this net system, we first add six control places \(V_{S1}, V_{S4}, V_{S10}, V_{S16}, V_{S17}, \) and \(V_{S18} \) which correspond to six elementary siphons \(S_1, S_4, S_{10}, S_{16}, S_{17}, \) and \(S_{18} \), respectively.

Among the 12 dependent siphons, eight \((S_2, S_3, S_7, S_8, S_9, S_{12}, S_{14}, S_{15}) \) of them are \(n = 2 \) dependent siphons that need to do the new MLI test and only \(S_{15} \) does not satisfy the old MLI when the corresponding control depth variables are 1.

Li and Zhou show that only \(S_{11}, S_{13}, \) and \(S_{15} \) (wasting time to check \(S_{11} \) and \(S_{13} \)) do not meet the old MLI and prove that the three SMSs can be controlled through LIP test based on Theorem 2. Note \(S_{11} = S_1 \circ S_6 \circ S_{17}, S_{13} = S_1 \circ S_6 \circ S_{18} \) \((n = 3, 3 \) elementary siphons), and \(S_{15} = S_1 \circ S_6 \) \((n = 2, 2 \) elementary siphons). Based on the discussion on (10), \(S_{11} \) and \(S_{13} \) are already controlled and need no monitors since \(n = 3 > 2 \). For \(S_{15}, S_{15} \cap S_{16} = \{p_{26}\} \), \(a = M_0(p_{21}) = 1, b = M_0(p_{26}) = 2, \) and \(c = M_0(p_{22}) = 1 \). \(S_{15} \) is already
controlled since \(b < c + a + 2 = 4 \) by (3). This example illustrates the advantage of our test by avoiding LIP or LPP test.

Remarks. On reconsidering the six control places computed for the well-known \(S^3PR \) example, the proposed method cannot deal with redundant control places. Uzam [12] *et al.* propose a redundancy test (the first of its kind) for the liveness enforcing supervisors (LES) of an FMS. When the redundancy test [12] is carried out for this particular example, BFT (back to front; *i.e.*, \(V_{S18}, V_{S17}, V_{S16}, V_{S10}, V_{S4}, \) and \(V_{S17} \) in that order) and FTB (front to back; *i.e.*, \(V_{S1}, V_{S4}, V_{S10}, V_{S16}, V_{S17}, \) and \(V_{S18} \) in that order) tests indicate that the control place \(V_{S17} \) shown in Fig. 5(b) is redundant (*i.e.*, the system remains live after removing \(V_{S17} \)). Moreover, when \(V_{S17} \) is removed from the controlled model of Fig. 5(b), the controlled model can even reach more good states than the one (6287) shown in Fig. 5(b). In other words the controlled model obtained by the control places \(V_{S1}, V_{S4}, V_{S10}, V_{S16}, \) and \(V_{S18} \) is live and can reach 6331 good states. However, it requires reachability analysis to test liveness which takes exponential time complexity negating the advantage of the proposed polynomial approach. It is interesting to find polynomial approaches to remove redundant monitors. Also it is still much less than the maximally permissive one. This is due to the larger controller region (by making control arcs to end at source transitions of processes) causing the original uncontrolled model to be more disturbed. As a matter of the fact, the number of good states provided by a liveness-enforcing supervisor is considered as a kind of quality measure within the literature. A comparison for this benchmark example among the different methods available within the literature in this respect can be seen from [13]. This is to say that it is also necessary to improve this quality measure in addition to computational complexity. It is interesting to extend the proposed approach to the maximally permissive control policy.

VI. CONCLUSION

We have improved the sufficiency test in the elementary siphon approach by Li & Zhou [1] for the special case when \(\eta_3 = \eta_1 + \eta_2 \) so that if the modified MLI is satisfied, there is no need for the

© 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
ensuing time-consuming linear integer programming test. We have further generalized it to the case where \(\eta_0 = \eta_1 + \eta_2 + \cdots + \eta_n \). The MLI needs to be modified by adding a constant \(\mu_{S1} \) to each control depth variable \(\xi_{S1} \) as shown in Theorem 4.2. When \(\mu_{S1} = 0 \), the MLI is the same as that in [1, 4]; such siphons are called type II ones and there is no need for LIP test.

In addition, we have derived a general formula to show that \(S_0 \) is always controlled and needs no monitor for \(n > 2 \). We have also extended the theory to weakly dependent siphons (to be reported in a future paper) and showed that weakly dependent siphons have similar controllability for both \(n = 2 \) and \(n > 2 \) cases. As a result, we need only verify controllability for \(n = 2 \) based on Theorem 4.2. Therefore, it takes linear time complexity compared with the exponential one in [1].

This paper is both theoretically and practically important. To control an FMS, it reduces the complexity from exponential to polynomial since only \(n = 2 \) strongly dependent type I (\(\mu_{S1} \neq 0 \)) siphons need to be verified against our new MLI test; the number of which is polynomial. We further prove that our new MLI test is both sufficient and necessary, much better than the only sufficient MLI or LPP (linear programming problem) in [1, 4–7]. This eliminates the LIP completely. Future work should apply to very large systems to enjoy the important theory developed in this paper.

REFERENCES

D. Y. Chao received the Ph.D. degree from electrical engineering and computer science from the University of California, Berkeley in 1987. From 1987–1988, he worked at Bell Laboratories. Since 1988, he joined the computer and information science department of New Jersey Institute. Since 1994, he joined the MIS department of NCCU as an associate professor. Since February, 1997, he has been promoted to a full professor. He is now working on the optimal control of flexible manufacturing systems.